Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titan’s Atmosphere Comes from Ammonia, Huygens Data Say

21.02.2005


Cassini-Huygens supplied new evidence about why Titan has an atmosphere, making it unique among all solar system moons, a University of Arizona planetary scientist says.


This mosaic of Titan’s surface was made from 16 images. The individual images have been specially processed to remove effects of Titan’s hazy atmosphere and to improve visibility of the surface near the terminator (the boundary between day and night). (Credit: NASA/JPL/Space Science Institute) Titan is one of only four solar system terrestrial bodies that has an atmosphere. That mostly nitrogen atmosphere probably came from liquid ammonia on Titan, according to UA’s Jonathan Lunine.



Scientists can infer from Cassini-Huygens results that Titan has ammonia, said Jonathan I. Lunine, an interdisciplinary scientist for the European Space Agency’s Huygens probe that landed on Titan last month. "I think what’s clear from the data is that Titan has accreted or acquired significant amounts of ammonia, as well as water," Lunine said. "If ammonia is present, it may be responsible for resurfacing significant parts of Titan." He predicts that Cassini instruments will find that Titan has a liquid ammonia-and-water layer beneath its hard, water-ice surface. Cassini will see -- Cassini radar has likely already seen -- places where liquid ammonia-and-water slurry erupted from extremely cold volcanoes and flowed across Titan’s landscape. Ammonia in the thick mixture released in this way, called "cryovolcanism," could be the source of molecular nitrogen, the major gas in Titan’s atmosphere.

Lunine and five other Cassini scientists reported on the latest results from the Cassini-Huygens mission at the American Association for the Advancement of Science meeting in Washington, D.C. today (Feb. 19). Cassini radar imaged a feature that resembles a basaltic flow on Earth when it made its first close pass by Titan in October 2004. Scientists believe that Titan has a rock core, surrounded by an overlying layer of rock-hard water ice. Ammonia in Titan’s volcanic fluid would lower the freezing point of water, lower the fluid’s density so it would be about as buoyant as water ice, and increase viscosity to about that of basalt, Lunine said. "The feature seen in the radar data suggests ammonia is at work on Titan in cryovolcanism."


Both Cassini’s Ion Neutral Mass Spectrometer and Huygen’s Gas Chromatograph Mass Spectrometer (GCMS) sampled Titan’s atmosphere, covering the uppermost atmosphere down to the surface. But neither detected the non-radiogenic form of argon, said Tobias Owen of the University of Hawaii, a Cassini interdisciplinary scientist and member of the GCMS science team. That suggests that the building blocks, or "planetesimals," that formed Titan contained nitrogen mostly in the form of ammonia. Titan’s eccentric, rather than circular, orbit can be explained by the moon’s subsurface liquid layer, Lunine said. Gabriel Tobie of the University of Nantes (France), Lunine and others will publish an article about it in a forthcoming issue of Icarus.

"One thing that Titan could not have done during its history is to have a liquid layer that then froze over, because during the freezing process, Titan’s rotation rate would have gone way, way up," Lunine said. "So either Titan has never had a liquid layer in its interior -- which is very hard to countenance, even for a pure water-ice object, because the energy of accretion would have melted water -- or that liquid layer has been maintained up until today. And the only way you maintain that liquid layer to the present is have ammonia in the mixture."

Cassini radar spotted a crater the size of Iowa when it flew within 1,577 kilometers (980 miles) of Titan on Tuesday, Feb. 15. "It’s exciting to see a remnant of an impact basin," said Lunine, who discussed more new radar results that NASA released at an AAAS news briefing today. "Big impact craters on Earth are nice places for getting hydrothermal systems. Maybe Titan has a kind of analogous ’methanothermal’ system," he said.

Radar results that show few impact craters is consistent with very young surfaces. "That means Titan’s craters are either being obliterated by resurfacing, or they are being buried by organics," Lunine said. "We don’t know which case it is." Researchers believe that hydrocarbon particles that fill Titan’s hazy atmosphere fall from the sky and blanket the ground below. If this has occurred throughout Titan’s history, Titan would have "the biggest hydrocarbon reservoir of any of the solid bodies in the solar system," Lunine noted. In addition to the question about why Titan has an atmosphere, there are two other great questions about Saturn’s giant moon, Lunine added.

A second question is how much methane has been destroyed throughout Titan’s history, and where all that methane comes from. Earth-based and space-based observers have long known that Titan’s atmosphere contains methane, ethane, acetylene and many other hydrocarbon compounds. Sunlight irreversibly destroys methane in Titan’s upper atmosphere because the released hydrogen escapes Titan’s weak gravity, leaving ethane and other hydrocarbons behind. When the Huygens probe warmed Titan’s damp surface where it landed, its instruments inhaled whiffs of methane. That is solid evidence that methane rain forms the complex network of narrow drainage channels running from brighter highlands to lower, flatter dark areas. Pictures from the UA-led Descent Imager-Spectral Radiometer experiment document Titan’s fluvial features.

The third question -- one that Cassini was not really instrumented to answer -- Lunine calls the "astrobiological" question. It is, given that liquid methane and its organic products rain down from Titan’s stratosphere, how far has organic chemistry progressed on Titan’s surface? The question is, Lunine said, "To what extent is any possible advanced chemistry at Titan’s surface at all relevant to prebiotic chemistry that presumably occurred on Earth prior to the time life began?"

The Cassini-Huygens mission is a collaboration between NASA, ESA and ASI, the Italian Space Agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASA’s Science Mission Directorate, Washington, D.C. JPL designed, developed and assembled the Cassini oribter while ESA operated the Huygens probe.

Lori Stiles | EurekAlert!
Further information:
http://uanews.org/cgi-bin/WebObjects/UANews.woa/wa/SRStoryDetails?ArticleID=10597
http://www.u.arizona.edu

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>