Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary grassroots astrophysics project ’Einstein@Home’ goes live

21.02.2005


Distributed computing project to search for gravitational waves.



A new grassroots computing project dubbed Einstein@Home, which will let anyone with a personal computer contribute to cutting edge astrophysics research, will be officially announced at the annual meeting of the American Association for the Advancement of Science (AAAS) in Washington DC on Saturday, February 19. LIGO Laboratory Director Barry Barish of Caltech and Einstein@Home Principal Investigator Bruce Allen of the University of Wisconsin-Milwaukee will make the announcement during a press briefing at the Wardman Park hotel in DC at 11AM.

Einstein@Home is a flagship program of the World Year of Physics 2005 celebration of the centennial of Albert Einstein’s miraculous year. The program searches for gravitational waves in data collected by US and European gravitational wave detectors.


Albert Einstein’s General Theory of Relativity predicted the existence of gravitational waves in 1916, but only now has technology reached the point that scientists hope to detect them directly. Gravitational waves are ripples in the fabric of space and time produced by violent events in the universe such as black hole collisions and exploding stars (supernovae). Longer-lived sources of gravitational waves include rapidly rotating compact stars, and binary systems composed of two orbiting stars. The ripples travel through space, carrying information both about their source and about the nature of gravity itself.

Einstein@Home searches data from the US Laser Interferometer Gravitational wave Observatory (LIGO) and the British/German GEO-600 gravitational wave observatory for signals coming from very dense, rapidly rotating compact quark and neutron stars. Einstein’s theory predicts that if these compact stars are not perfectly spherical, they should continuously emit gravitational waves. LIGO and GEO-600 are now sufficiently sensitive that they might detect these signals if the stars are close enough to earth.

Finding such signals in gravitational wave data requires an enormous amount of computing power. Estimates indicate that searching gravitational data with the maximum possible sensitivity would require many times the computing capacity of even the most powerful supercomputer. Therefore, LIGO Scientific Collaboration researchers from the Albert Einstein Institute, UWM, and the LIGO Laboratory are enlisting the aid of an army of home computer users to analyze the data. Much like the popular SETI@Home project that searches radio telescope data for signs of extraterrestrial life, Einstein@Home will involve hundreds of thousands people who will dedicate a portion of their personal computers’ computational time to the project.

The Einstein@Home program is available for PCs running Windows, Linux, and Mac operating systems. When the computer is not in use, it downloads LIGO and GEO600 data from a central server and searches it for gravitational wave signals. While running, it displays a screensaver that depicts the celestial sphere, with the major constellations outlined. A moving marker indicates the portion of the sky currently being searched on the computer.

James Riordon | EurekAlert!
Further information:
http://www.aps.org
http://einstein.phys.uwm.edu/
http://www.physics2005.org/

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>