Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary grassroots astrophysics project ’Einstein@Home’ goes live

21.02.2005


Distributed computing project to search for gravitational waves.



A new grassroots computing project dubbed Einstein@Home, which will let anyone with a personal computer contribute to cutting edge astrophysics research, will be officially announced at the annual meeting of the American Association for the Advancement of Science (AAAS) in Washington DC on Saturday, February 19. LIGO Laboratory Director Barry Barish of Caltech and Einstein@Home Principal Investigator Bruce Allen of the University of Wisconsin-Milwaukee will make the announcement during a press briefing at the Wardman Park hotel in DC at 11AM.

Einstein@Home is a flagship program of the World Year of Physics 2005 celebration of the centennial of Albert Einstein’s miraculous year. The program searches for gravitational waves in data collected by US and European gravitational wave detectors.


Albert Einstein’s General Theory of Relativity predicted the existence of gravitational waves in 1916, but only now has technology reached the point that scientists hope to detect them directly. Gravitational waves are ripples in the fabric of space and time produced by violent events in the universe such as black hole collisions and exploding stars (supernovae). Longer-lived sources of gravitational waves include rapidly rotating compact stars, and binary systems composed of two orbiting stars. The ripples travel through space, carrying information both about their source and about the nature of gravity itself.

Einstein@Home searches data from the US Laser Interferometer Gravitational wave Observatory (LIGO) and the British/German GEO-600 gravitational wave observatory for signals coming from very dense, rapidly rotating compact quark and neutron stars. Einstein’s theory predicts that if these compact stars are not perfectly spherical, they should continuously emit gravitational waves. LIGO and GEO-600 are now sufficiently sensitive that they might detect these signals if the stars are close enough to earth.

Finding such signals in gravitational wave data requires an enormous amount of computing power. Estimates indicate that searching gravitational data with the maximum possible sensitivity would require many times the computing capacity of even the most powerful supercomputer. Therefore, LIGO Scientific Collaboration researchers from the Albert Einstein Institute, UWM, and the LIGO Laboratory are enlisting the aid of an army of home computer users to analyze the data. Much like the popular SETI@Home project that searches radio telescope data for signs of extraterrestrial life, Einstein@Home will involve hundreds of thousands people who will dedicate a portion of their personal computers’ computational time to the project.

The Einstein@Home program is available for PCs running Windows, Linux, and Mac operating systems. When the computer is not in use, it downloads LIGO and GEO600 data from a central server and searches it for gravitational wave signals. While running, it displays a screensaver that depicts the celestial sphere, with the major constellations outlined. A moving marker indicates the portion of the sky currently being searched on the computer.

James Riordon | EurekAlert!
Further information:
http://www.aps.org
http://einstein.phys.uwm.edu/
http://www.physics2005.org/

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>