Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary grassroots astrophysics project ’Einstein@Home’ goes live

21.02.2005


Distributed computing project to search for gravitational waves.



A new grassroots computing project dubbed Einstein@Home, which will let anyone with a personal computer contribute to cutting edge astrophysics research, will be officially announced at the annual meeting of the American Association for the Advancement of Science (AAAS) in Washington DC on Saturday, February 19. LIGO Laboratory Director Barry Barish of Caltech and Einstein@Home Principal Investigator Bruce Allen of the University of Wisconsin-Milwaukee will make the announcement during a press briefing at the Wardman Park hotel in DC at 11AM.

Einstein@Home is a flagship program of the World Year of Physics 2005 celebration of the centennial of Albert Einstein’s miraculous year. The program searches for gravitational waves in data collected by US and European gravitational wave detectors.


Albert Einstein’s General Theory of Relativity predicted the existence of gravitational waves in 1916, but only now has technology reached the point that scientists hope to detect them directly. Gravitational waves are ripples in the fabric of space and time produced by violent events in the universe such as black hole collisions and exploding stars (supernovae). Longer-lived sources of gravitational waves include rapidly rotating compact stars, and binary systems composed of two orbiting stars. The ripples travel through space, carrying information both about their source and about the nature of gravity itself.

Einstein@Home searches data from the US Laser Interferometer Gravitational wave Observatory (LIGO) and the British/German GEO-600 gravitational wave observatory for signals coming from very dense, rapidly rotating compact quark and neutron stars. Einstein’s theory predicts that if these compact stars are not perfectly spherical, they should continuously emit gravitational waves. LIGO and GEO-600 are now sufficiently sensitive that they might detect these signals if the stars are close enough to earth.

Finding such signals in gravitational wave data requires an enormous amount of computing power. Estimates indicate that searching gravitational data with the maximum possible sensitivity would require many times the computing capacity of even the most powerful supercomputer. Therefore, LIGO Scientific Collaboration researchers from the Albert Einstein Institute, UWM, and the LIGO Laboratory are enlisting the aid of an army of home computer users to analyze the data. Much like the popular SETI@Home project that searches radio telescope data for signs of extraterrestrial life, Einstein@Home will involve hundreds of thousands people who will dedicate a portion of their personal computers’ computational time to the project.

The Einstein@Home program is available for PCs running Windows, Linux, and Mac operating systems. When the computer is not in use, it downloads LIGO and GEO600 data from a central server and searches it for gravitational wave signals. While running, it displays a screensaver that depicts the celestial sphere, with the major constellations outlined. A moving marker indicates the portion of the sky currently being searched on the computer.

James Riordon | EurekAlert!
Further information:
http://www.aps.org
http://einstein.phys.uwm.edu/
http://www.physics2005.org/

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>