Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find Saturn’s radio emissions, bright auroras linked

17.02.2005


Just as the static on an AM radio grows louder with the approach of a summer lightning storm, strong radio emissions accompany bright auroral spots -- similar to Earth’s northern lights -- on the planet Saturn, according to a research paper published in the Thursday, Feb. 17 issue of the journal Nature.



William Kurth, research scientist in the University of Iowa College of Liberal Arts and Sciences Department of Physics and Astronomy, says that the data was collected in early 2004, with NASA’s Cassini spacecraft measuring the strength of Saturn’s solar wind and radio emissions and the Hubble Space Telescope taking pictures of Saturn’s aurora, or southern lights. The results also indicated that strong radio emissions grow stronger when the solar wind blows harder.

"We had expected that this might be the case, based on our understanding of auroral radio signals from Earth’s auroras, but this is the first time we’ve been able to compare Saturn’s radio emissions with detailed images of the aurora," Kurth says. "This is important to our on-going Cassini studies because this association allows us to have some idea of what the aurora are doing throughout the mission from our continuous radio observations."


Co-author Don Gurnett, Cassini Radio and Plasma Wave Science (RPWS) instrument principal investigator, says the finding means that radio emissions from Saturn’s aurora are very similar to radio emissions from the Earth’s aurora.

Kurth says that one of Cassini’s objectives is to understand how the magnetic field around Saturn, called its magnetosphere, responds to the influence of the solar wind, a hot gas composed of electrons and ions that originates at the Sun and blows past the planets at speeds around one million miles per hour.

Two related papers published by other researchers in Thursday’s issue of Nature show that, like a flaming log in a campfire, Saturn’s aurora become brighter and more expansive when the solar wind blows harder. However, the distribution of auroras on Saturn differs from those on Earth.

Other discoveries made by UI researchers using the RPWS instrument have included finding that lightning on Saturn is roughly one million times stronger than lightning on Earth; observing that Cassini impacted dust particles as it traversed Saturn’s rings; and learning that Saturn’s radio rotation rate varies.

The radio sounds of Saturn’s rotation -- resembling a heartbeat -- and other sounds of space can be heard by visiting http://www-pw.physics.uiowa.edu/space-audio.

Cassini, carrying 12 scientific instruments, on June 30, 2004 became the first spacecraft to orbit Saturn and began a four-year study of the planet, its rings and its 31 known moons. The $1.4 billion spacecraft is part of the $3.3 billion Cassini-Huygens Mission that includes the European Space Agency’s Huygens probe that landed on Saturn’s moon Titan in January. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology, Pasadena, Calif. manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. JPL designed, developed and assembled the Cassini orbiter. For the latest images and information about the Cassini-Huygens mission, visit: http://www.nasa.gov/cassini

Gary Galluzzo | EurekAlert!
Further information:
http://www-pw.physics.uiowa.edu/space-audio
http://www.nasa.gov/cassini

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>