Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA observatory confirms black hole limits


Weight limits for biggest black holes confirmed

The very largest black holes reach a certain point and then grow no more. That’s according to the best survey to date of black holes made with NASA’s Chandra X-ray Observatory. Scientists also discovered previously hidden black holes well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the sun, ate voraciously during the early universe. Nearly all of them ran out of "food" billions of years ago and went onto a forced starvation diet.

On the other hand, black holes approximately 10 to 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing. "Our data show some super massive black holes seem to binge, while others prefer to graze," said Amy Barger of the University of Wisconsin and University of Hawaii. Barger is lead author of the paper describing the results in the latest issue of The Astronomical Journal. "We understand better than ever how super massive black holes grow."

One revelation is there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies but didn’t know as much about the black holes at their centers. "These galaxies lose material into their central black holes at the same time they make their stars," Barger said. "So whatever mechanism governs star formation in galaxies also governs black hole growth."

Astronomers made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer to Earth. Now, for the first time, the ones in between have been properly counted. "We need to have an accurate head count over time of all growing black holes if we ever hope to understand their habits, so to speak," said co-author Richard Mushotzky of NASA’s Goddard Space Flight Center, Greenbelt, Md.

This study relied on the deepest X-ray images ever obtained, the Chandra Deep Fields North and South, plus a key wider-area survey of an area called the "Lockman Hole." The distances to the X-ray sources were determined by optical spectroscopic follow-up at the Keck 10-meter telescope on Mauna Kea in Hawaii, and show the black holes range from less than a billion to 12 billion light-years away. X-rays can penetrate the gas and dust that block optical and ultraviolet emissions. The very long-exposure images are crucial to find black holes that otherwise would go unnoticed.

Chandra found many of the black holes smaller than about 100 million suns are buried under large amounts of dust and gas. This prevents detection of the optical light from the heated material near the black hole. The X-rays are more energetic and able to burrow through this dust and gas. However, the largest of the black holes show little sign of being obscured by dust or gas. In a form of weight self-control, powerful winds generated by the black hole’s feeding frenzy may have cleared out the remaining dust and gas.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Space Mission Directorate, Washington. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Megan Watzke | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>