Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instants In The Flow - Request Stop

14.02.2005


The Novosibirsk researchers have developed a device capable of producing mist with support from the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises (FASIE). The precise name of the device is “field device for measuring liquid and gas velocities”. It helps to perform prompt, precise and, most importantly, simultaneous measuring of the velocity at any point of the fluid and gas flow.



“Field device for measuring liquid and gas velocity” is the name of the device developed and produced by the researchers of Institute of Thermal Physics, Siberian Branch, Russian Academy of Sciences (Novosibirsk) with support from the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises (FASIE). The device helps to track in full detail the life of the flow and to learn, for example, what the velocity is at each point, how and where turbulences appear. In other words, it is possible not only to “shoot an animated film” about the flow of liquid or gas, but also to perform mathematical treatment of each “shot”.

The device operations are based on the principle known since the times of Prandtl and other classical hydrodynamics scholars. This is the so-called stroboscopical visualization of flows. In other words, small particles – tracers – are placed in the flow transparent for employed irradiation. The tracers do not influence the stream, they drift together with the flow, but the tracers are not transparent for irradiation.


If the flow containing such tracers is illuminated by short flashes of light with a certain delay between the flashes and if every time the flow is shot on cinefilm, photographic film or camera-recorder, then there will be a sequence of “ snap shots” of the particles. Analyzing them, it is possible to determine velocity of liquid or gas in the flow or, in specialists’ terms, to visualize field of flow velocities.

There are a lot complications here. It is necessary that everything – tracer-particles generator, radiation source (usually, this is laser) and digital camera-recorder – worked exclusively synchronously under control of a computer. However, processing of the acquired images is more complicated. It is extremely complicated and laborious when done manually (that is the way it was done previously), particularly in turbulent flows, where statistical analysis of a large quantity of instantaneous field of velocities is required. For computer to do this, appropriate software is required – algorithms with the help of which electronic brain quickly and accurately extract information about velocity of each particle from distribution of particles in time and space, and consequently, about velocities of flow at each point.

These algorithms in particular make the major share of all know-how in this method. The Novosibirsk researchers have coped with the development of algorithms, as well as with the first technical task. It should be noted that the algorithms developed by the researchers are a part of the ten world leaders in this area.

The first device is already in place. Especially for the device, the researchers have developed the mist spray generator, synchronizer processor that allows to control NdYAG pulsed lasers of any model and digital cameras.

“So far, we do not produce yet the field device for measuring liquid and gas velocity of the Institute of Thermal Physics (Siberian Branch, Russian Academy of Sciences), says Dmitry Markovich, Deputy Director of the Institute of Thermal Physics. Having created the prototype within the framework of innovation program of the Russian Foundation for Basic Research - Foundation for Assistance to Small Innovative Enterprises (FASIE), we are now making single sets of the system upon individual orders. Thus, with support from the Ministry of Science, we are preparing the device shipment to the Institute of Mechanics of Continua (Ural Branch, Russian Academy of Sciences), a request form The Institute of Computational Technologies, Russian Academy of Sciences (Moscow), is under consideration now. There are a lot of consumers of these facilities in Russia, the list of requests has already exceeded a dozen. However, it should be understood that these facilities will never be for the masses. This is a specialized device intended for research laboratories and engineering departments of big corporations. That is the way all over the world. Nevertheless, in Russia this niche is vacant. We hope that it will be filled with a little help from our Institute. And we shall be able to successfully compete in the world market.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>