Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Develop Biowarfare Sensing Elements That Permit Mass Production of Highly Sensitive and Stable Nerve-Gas Detectors

11.02.2005


A sensing device tailored for mass production of highly sensitive and stable nerve-gas detectors has been developed by a research group led by a mechanical engineer at The University of Texas at Austin.



The new sensor technology, which was more sensitive and much more stable than its predecessors, was featured on this week’s cover of Applied Physics Letters. The researchers’ highlighted study demonstrated the sensor’s potential ability to detect a single molecule of the nerve gas, sarin, the most toxic of biological warfare agents.

The researchers, led by Dr. Li Shi, designed and tested a nanometer-thin crystal of tin oxide sandwiched between two electrodes. When a built-in micro-heater heated the super-thin device, the tin oxide reacted with exquisite sensitivity to gases.


Shi’s group experimented with a non-toxic gas, dimethly methylphosphonate (DMMP) widely used to accurately mimic sarin and other nerve agents. The sensor element responded to as few as about 50 molecules of the DMMP in a billion air molecules. Both the nano-sizing of the metal-oxide and the unique micro-heater element of the sensor gave the detector its high sensitivity, stability and low power consumption, said Shi, assistant professor of mechanical engineering.

The thinner a metal-oxide sensor becomes, the more sensitive it becomes to molecules that react with it. In addition to improved sensitivity, the group found its single-crystal metal-oxide nanomaterials allowed the detector to quickly dispose of previously detected toxins and accurately warn of new toxins’ presence.

Shi’s engineering collaborator, Zhong Lin Wang from Georgia Institute of Technology, provided single crystals of tin oxide as thin as 10 nanometers, and with the ability to rapidly recover from chemical exposure. The researchers found that the sensor was refreshed immediately after the DMMP molecules were purged from the small flow-through chamber where the sensor element was tested in. By contrast, previous polycrystalline metal oxide thin film sensors could not recover automatically after being exposed to toxic or flammable gases, an effect known as sensor poisoning.

Co-author and collaborator Wang is the first to grow the ribbon-like, single crystals of tin oxide used for sensing DMMP. Other sensors of this type consist of crystals with many imperfections, and recover slowly because molecules previously detected can become trapped in these imperfections.

Shi constructed the accompanying sensor components using traditional computer chip design and fabrication techniques. Specifically, he used microelectromechanical systems (MEMS) fabrication methods.

For instance, MEMS was used to fabricate the platinum electrodes, one of which links to a
microfabricated heating element and thermometer to elevate the nano sensor’s temperature to a constant 932 degrees Fahrenheit (500 degrees Celsius) with a power consumption of only 3-4 milliwatts. These components allow the sensor to be operated using a battery so that it can be used as a wearable device. To minimize heat loss, Shi’s group isolated the silicon nitride membranes attaching the electrodes using trapeze-like strands of microfabricated silicon nitride.

The sensor requires the high temperature to activate the reaction between DMMP molecules and the tin-oxide sensor element. That reaction changes the electrical current across the crystal, which indicates a nerve agent is present.

The paper was based on the dissertation research of the lead author, Choongho Yu. Yu received a doctor’s degree in mechanical engineering from The University of Texas at Austin last year, and is a post-doctoral fellow at Lawrence Berkeley National Laboratory.

Shi’s group is continuing to develop methods to integrate nanomaterials with MEMS devices more efficiently in order to microfabricate better, lower-cost sensors. Multiple sensor elements would then be packaged together to produce a commercial sensing device that acts as an electronic nose for detecting different toxic and flammable molecules.

Note: This research was funded by grants from the National Science Foundation and the University of Texas at Austin.

About UT’s College of Engineering:

The University of Texas College of Engineering ranks among the top ten engineering schools in the United States. With the nation’s third highest percentage of faculty elected members of the National Academy of Engineering, the College’s 6,500 students gain exposure to the nation’s finest engineering practitioners. Appropriately, the College’s logo, an embellished checkmark used by the first UT engineering dean to denote high quality student work, is the nation’s oldest quality symbol.

Becky Rische | EurekAlert!
Further information:
http://www.engr.utexas.edu
http://www.utexas.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>