Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find flaw in quantum dot construction

11.02.2005


Nanoscientists dream of developing a quantum computer, a device the size of a grain of sand that could be faster and more powerful than today’s PCs. They’ve identified tiny artificial atoms – called "quantum dots" – as the most likely materials to build these machines, but have been puzzled by the dots’ unpredictable behavior at the nanoscale.



Now a team of Ohio University physicists thinks it’s found the problem – and has proposed a blueprint for building a better quantum dot. The researchers, who published their findings in this week’s issue of Physical Review Letters, argue that defects formed during creation of the quantum dots operate as a barrier to scientific experimentation.

Experimental scientists in Germany had blasted the quantum dots with light to create the quantum mechanical state needed to run a quantum computer. But they couldn’t consistently control that state, explained Sergio Ulloa, an Ohio University professor of physics and astronomy. Jose Villas-Boas, a postdoctoral fellow at Ohio University, Ulloa and Associate Professor Alexander Govorov developed theoretical models to learn what went wrong.


The problem, they argued, happens during the creation of the type of quantum dots under study. Using a molecular beam epitaxy chamber, scientists spray paint a surface with atoms under high temperatures, creating an atomic coating. As more layers are added, the quantum dots bead up on the surface like droplets of water, Ulloa said. But a fine residue left behind on the surface that Ulloa calls the "wetting layer" can cause problems during experiments. When experimental scientists blasted the quantum dots with a beam of light in previous studies, the wetting layer caused interference, instead of allowing the light to enter the dot and trigger the quantum state, he explained.

The study suggests that scientists could tweak the process by re-focusing the beam of light or changing the duration of the light pulses to negate the effects of the wetting layer, Villas-Boas said. One experimental physicist already has used the theoretical finding to successfully manipulate a quantum dot in the lab, he added. "Now that they know the problem, they realize there are a few ways to avoid it," Villas-Boas said.

The new finding ultimately could lead to the creation of a better quantum dot and can help scientists understand more about quantum states, Ulloa added. "It’s one more step towards the holy grail of finding a better quantum bit, which hopefully will lead to a quantum computer," he said.

Nanoscientists are creating quantum dots in many different ways, Ulloa noted, for use in various applications. The self-assembled type under study could be used in optical electronics and quantum computers. Other types, such as dots grown in a solution, might be used for solar energy applications.

The study also will help the Ohio University team better understand how to control the spin of electrons – a property that could be the underlying mechanism behind faster, more efficient future electronic devices, he added.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>