Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find flaw in quantum dot construction

11.02.2005


Nanoscientists dream of developing a quantum computer, a device the size of a grain of sand that could be faster and more powerful than today’s PCs. They’ve identified tiny artificial atoms – called "quantum dots" – as the most likely materials to build these machines, but have been puzzled by the dots’ unpredictable behavior at the nanoscale.



Now a team of Ohio University physicists thinks it’s found the problem – and has proposed a blueprint for building a better quantum dot. The researchers, who published their findings in this week’s issue of Physical Review Letters, argue that defects formed during creation of the quantum dots operate as a barrier to scientific experimentation.

Experimental scientists in Germany had blasted the quantum dots with light to create the quantum mechanical state needed to run a quantum computer. But they couldn’t consistently control that state, explained Sergio Ulloa, an Ohio University professor of physics and astronomy. Jose Villas-Boas, a postdoctoral fellow at Ohio University, Ulloa and Associate Professor Alexander Govorov developed theoretical models to learn what went wrong.


The problem, they argued, happens during the creation of the type of quantum dots under study. Using a molecular beam epitaxy chamber, scientists spray paint a surface with atoms under high temperatures, creating an atomic coating. As more layers are added, the quantum dots bead up on the surface like droplets of water, Ulloa said. But a fine residue left behind on the surface that Ulloa calls the "wetting layer" can cause problems during experiments. When experimental scientists blasted the quantum dots with a beam of light in previous studies, the wetting layer caused interference, instead of allowing the light to enter the dot and trigger the quantum state, he explained.

The study suggests that scientists could tweak the process by re-focusing the beam of light or changing the duration of the light pulses to negate the effects of the wetting layer, Villas-Boas said. One experimental physicist already has used the theoretical finding to successfully manipulate a quantum dot in the lab, he added. "Now that they know the problem, they realize there are a few ways to avoid it," Villas-Boas said.

The new finding ultimately could lead to the creation of a better quantum dot and can help scientists understand more about quantum states, Ulloa added. "It’s one more step towards the holy grail of finding a better quantum bit, which hopefully will lead to a quantum computer," he said.

Nanoscientists are creating quantum dots in many different ways, Ulloa noted, for use in various applications. The self-assembled type under study could be used in optical electronics and quantum computers. Other types, such as dots grown in a solution, might be used for solar energy applications.

The study also will help the Ohio University team better understand how to control the spin of electrons – a property that could be the underlying mechanism behind faster, more efficient future electronic devices, he added.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>