Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£11 million funding boost for top research teams

10.02.2005


Two top research teams at the University of Southampton have this week secured a funding boost worth over £11 million between them. The two research groups, working in NanoPhotonics and Photonics, were among six groups nationwide to receive long-term funding support under the Portfolio Partnerships initiative launched by Lord Sainsbury.



Southampton is the only university to receive two of the new batch of Portfolio Partnerships, securing over half the £22 million funding awarded in this round.

Portfolio Partnerships have been introduced by the Engineering and Physical Sciences Research Council (EPSRC) to provide long-term support to top research teams with a proven track record of achievement and sustained support from EPSRC. Stable funding allows teams to innovate, explore new directions in research and provides increased opportunities to establish collaborations with others.


University Vice-Chancellor, Professor Bill Wakeham, signed the partnership agreements on behalf of the University this week. He commented: ’For Southampton to be awarded two Portfolio Partnerships is excellent news. To receive one would be impressive-to be awarded two is exceptional. This recognises the sustained high quality of research groups in both engineering and physical sciences at Southampton and the high value placed on their research by the funding body.’

The Portfolio Partnership in Photonics, which is led by Professor David Payne, Director of the University’s Optoelectronics Research Centre, is worth £7.2 million over five years. Professor Payne commented: ’From the day the first lasers dazzled laboratories worldwide and the first hair-thin threads of glass were drawn into optical fibres, researchers at the University of Southampton have been at the forefront of global progress in photonics. ’Today, with a team of over 180 researchers and support staff behind it, our Portfolio Partnership based within the Optoelectronics Research Centre is poised to carry on surfing these light waves into the future. ’This research will lead to a new generation of photonic devices having unprecedented performance and functionality which will change our lives and expand our opportunities as much, if not more dramatically, than the first laser a generation ago.’

Professors Nikolay Zheludev and Jeremy Baumberg of the University’s School of Physics and Astronomy have established a Portfolio Partnership in NanoPhotonics. The £4.0 million supports research for the next five years in this new field. Professor Baumberg commented: ’NanoPhotonics emerges when we force light to interact with chunks of artificially engineered matter only billionths of a metre across. ’Handling such ultra-small devices requires a committed interdisciplinary team involving physics, chemistry and electronics, which is world-leading at the University of Southampton.

Professor Zheludev, Co-ordinator of the NanoPhotonics portfolio, adds: ’NanoPhotonics promises captivating new fundamental physics, and new mind-blowing applications in low power, ultra-small devices performing at the quantum edge in a wide range of technologies from information processing, to defence, security, medicine and biotechnologies. Our broad goals are to develop concepts of optical functionality on the smallest possible size scale, at the lowest possible energy level, and on the shortest possible timescale.’

The Portfolio Partnership scheme was launched in April 2003 with the announcement of eight pilot Portfolio Partnerships with a combined value of £28 million. Building on the scheme’s success, the six new Portfolio Partnerships launched this week have been funded with a total value of £22 million.

The six new Portfolio Partnerships are:

  • NanoPhotonics Portfolio Partnership (University of Southampton)
  • Portfolio Partnership in Photonics (University of Southampton)
  • Novel Quantum Order in Interacting Electron Metals (University of Bristol, University of Cambridge and University of St Andrews)
  • Portfolio Partnership in Complex Fluids and Complex Flows (University of Wales Swansea and University of Wales, Aberystwyth)
  • Portfolio Partnership on Modelling of Transport and Dynamics in Mesoscale Systems (Lancaster University)
  • Complex Material Discovery (University of Liverpool)

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>