Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


£11 million funding boost for top research teams


Two top research teams at the University of Southampton have this week secured a funding boost worth over £11 million between them. The two research groups, working in NanoPhotonics and Photonics, were among six groups nationwide to receive long-term funding support under the Portfolio Partnerships initiative launched by Lord Sainsbury.

Southampton is the only university to receive two of the new batch of Portfolio Partnerships, securing over half the £22 million funding awarded in this round.

Portfolio Partnerships have been introduced by the Engineering and Physical Sciences Research Council (EPSRC) to provide long-term support to top research teams with a proven track record of achievement and sustained support from EPSRC. Stable funding allows teams to innovate, explore new directions in research and provides increased opportunities to establish collaborations with others.

University Vice-Chancellor, Professor Bill Wakeham, signed the partnership agreements on behalf of the University this week. He commented: ’For Southampton to be awarded two Portfolio Partnerships is excellent news. To receive one would be impressive-to be awarded two is exceptional. This recognises the sustained high quality of research groups in both engineering and physical sciences at Southampton and the high value placed on their research by the funding body.’

The Portfolio Partnership in Photonics, which is led by Professor David Payne, Director of the University’s Optoelectronics Research Centre, is worth £7.2 million over five years. Professor Payne commented: ’From the day the first lasers dazzled laboratories worldwide and the first hair-thin threads of glass were drawn into optical fibres, researchers at the University of Southampton have been at the forefront of global progress in photonics. ’Today, with a team of over 180 researchers and support staff behind it, our Portfolio Partnership based within the Optoelectronics Research Centre is poised to carry on surfing these light waves into the future. ’This research will lead to a new generation of photonic devices having unprecedented performance and functionality which will change our lives and expand our opportunities as much, if not more dramatically, than the first laser a generation ago.’

Professors Nikolay Zheludev and Jeremy Baumberg of the University’s School of Physics and Astronomy have established a Portfolio Partnership in NanoPhotonics. The £4.0 million supports research for the next five years in this new field. Professor Baumberg commented: ’NanoPhotonics emerges when we force light to interact with chunks of artificially engineered matter only billionths of a metre across. ’Handling such ultra-small devices requires a committed interdisciplinary team involving physics, chemistry and electronics, which is world-leading at the University of Southampton.

Professor Zheludev, Co-ordinator of the NanoPhotonics portfolio, adds: ’NanoPhotonics promises captivating new fundamental physics, and new mind-blowing applications in low power, ultra-small devices performing at the quantum edge in a wide range of technologies from information processing, to defence, security, medicine and biotechnologies. Our broad goals are to develop concepts of optical functionality on the smallest possible size scale, at the lowest possible energy level, and on the shortest possible timescale.’

The Portfolio Partnership scheme was launched in April 2003 with the announcement of eight pilot Portfolio Partnerships with a combined value of £28 million. Building on the scheme’s success, the six new Portfolio Partnerships launched this week have been funded with a total value of £22 million.

The six new Portfolio Partnerships are:

  • NanoPhotonics Portfolio Partnership (University of Southampton)
  • Portfolio Partnership in Photonics (University of Southampton)
  • Novel Quantum Order in Interacting Electron Metals (University of Bristol, University of Cambridge and University of St Andrews)
  • Portfolio Partnership in Complex Fluids and Complex Flows (University of Wales Swansea and University of Wales, Aberystwyth)
  • Portfolio Partnership on Modelling of Transport and Dynamics in Mesoscale Systems (Lancaster University)
  • Complex Material Discovery (University of Liverpool)

Sarah Watts | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>