Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£11 million funding boost for top research teams

10.02.2005


Two top research teams at the University of Southampton have this week secured a funding boost worth over £11 million between them. The two research groups, working in NanoPhotonics and Photonics, were among six groups nationwide to receive long-term funding support under the Portfolio Partnerships initiative launched by Lord Sainsbury.



Southampton is the only university to receive two of the new batch of Portfolio Partnerships, securing over half the £22 million funding awarded in this round.

Portfolio Partnerships have been introduced by the Engineering and Physical Sciences Research Council (EPSRC) to provide long-term support to top research teams with a proven track record of achievement and sustained support from EPSRC. Stable funding allows teams to innovate, explore new directions in research and provides increased opportunities to establish collaborations with others.


University Vice-Chancellor, Professor Bill Wakeham, signed the partnership agreements on behalf of the University this week. He commented: ’For Southampton to be awarded two Portfolio Partnerships is excellent news. To receive one would be impressive-to be awarded two is exceptional. This recognises the sustained high quality of research groups in both engineering and physical sciences at Southampton and the high value placed on their research by the funding body.’

The Portfolio Partnership in Photonics, which is led by Professor David Payne, Director of the University’s Optoelectronics Research Centre, is worth £7.2 million over five years. Professor Payne commented: ’From the day the first lasers dazzled laboratories worldwide and the first hair-thin threads of glass were drawn into optical fibres, researchers at the University of Southampton have been at the forefront of global progress in photonics. ’Today, with a team of over 180 researchers and support staff behind it, our Portfolio Partnership based within the Optoelectronics Research Centre is poised to carry on surfing these light waves into the future. ’This research will lead to a new generation of photonic devices having unprecedented performance and functionality which will change our lives and expand our opportunities as much, if not more dramatically, than the first laser a generation ago.’

Professors Nikolay Zheludev and Jeremy Baumberg of the University’s School of Physics and Astronomy have established a Portfolio Partnership in NanoPhotonics. The £4.0 million supports research for the next five years in this new field. Professor Baumberg commented: ’NanoPhotonics emerges when we force light to interact with chunks of artificially engineered matter only billionths of a metre across. ’Handling such ultra-small devices requires a committed interdisciplinary team involving physics, chemistry and electronics, which is world-leading at the University of Southampton.

Professor Zheludev, Co-ordinator of the NanoPhotonics portfolio, adds: ’NanoPhotonics promises captivating new fundamental physics, and new mind-blowing applications in low power, ultra-small devices performing at the quantum edge in a wide range of technologies from information processing, to defence, security, medicine and biotechnologies. Our broad goals are to develop concepts of optical functionality on the smallest possible size scale, at the lowest possible energy level, and on the shortest possible timescale.’

The Portfolio Partnership scheme was launched in April 2003 with the announcement of eight pilot Portfolio Partnerships with a combined value of £28 million. Building on the scheme’s success, the six new Portfolio Partnerships launched this week have been funded with a total value of £22 million.

The six new Portfolio Partnerships are:

  • NanoPhotonics Portfolio Partnership (University of Southampton)
  • Portfolio Partnership in Photonics (University of Southampton)
  • Novel Quantum Order in Interacting Electron Metals (University of Bristol, University of Cambridge and University of St Andrews)
  • Portfolio Partnership in Complex Fluids and Complex Flows (University of Wales Swansea and University of Wales, Aberystwyth)
  • Portfolio Partnership on Modelling of Transport and Dynamics in Mesoscale Systems (Lancaster University)
  • Complex Material Discovery (University of Liverpool)

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>