Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First measurement of Titan’s winds from Huygens

09.02.2005


Using a global network of radio telescopes, scientists have measured the speed of the winds faced by Huygens during its descent through the atmosphere of Titan.


Huygens probe descending through Titan’s atmosphere



This measurement could not be done from space because of a configuration problem with one of Cassini’s receivers. The winds are weak near the surface and increase slowly with altitude up to about 60 km, becoming much rougher higher up where significant vertical wind shear may be present.

Preliminary estimates of the wind variations with altitude on Titan have been obtained from measurements of the frequency of radio signals from Huygens, recorded during the probe’s descent on 14 January 2005. These ‘Doppler’ measurements, obtained by a global network of radio telescopes, reflect the relative speed between the transmitter on Huygens and the receiver on the Earth.


Winds in the atmosphere affected the horizontal speed of the probe’s descent and produced a change in the frequency of the signal received on Earth. This phenomenon is similar to the commonly heard change in pitch of a siren on a speeding police car.

Leading the list of large radio antennas involved in the programme were the NRAO Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, USA, and the CSIRO Parkes Radio Telescope in Australia. Special instrumentation designed for detection of weak signals was used to measure the ‘carrier’ frequency of the Huygens radio signal during this unique opportunity.

The initial detection, made with the ‘Radio Science Receivers’ on loan from NASA’s Deep Space Network, provided the first unequivocal proof that Huygens had survived the entry phase and had begun its radio relay transmission to Cassini.

The very successful signal detection on Earth provided a surprising turnabout for the Cassini-Huygens Doppler Wind Experiment (DWE), whose data could not be recorded on the Cassini spacecraft due to a commanding error needed to properly configure the receiver. “Our team has now taken a significant first step to recovering the data needed to fulfil our original scientific goal, an accurate profile of Titan’s winds along the descent trajectory of Huygens,” said DWE’s Principal Investigator Dr Michael Bird (University of Bonn, Germany).

The ground-based Doppler measurements were carried out and processed jointly by scientists from the NASA Jet Propulsion Laboratory (JPL, USA) and the Joint Institute for VLBI in Europe (JIVE, The Netherlands) working within the DWE team.

Winds on Titan are found to be flowing in the direction of Titan’s rotation (from west to east) at nearly all altitudes. The maximum speed of roughly 120 metres per second (430 km/h) was measured about ten minutes after the start of the descent, at an altitude of about 120 km. The winds are weak near the surface and increase slowly with altitude up to about 60 km.

This pattern does not continue at altitudes above 60 km, where large variations in the Doppler measurements are observed. Scientists believe that these variations may arise from significant vertical wind shear. That Huygens had a rough ride in this region was already known from the science and engineering data recorded on board Huygens. “Major mission events, such as the parachute exchange about 15 minutes into the atmospheric flight and impact on Titan at 13:45 CET, produced Doppler signatures that we can clearly identify in the data,” Bird said.

At present, there exists an approximately 20-minute interval with no data between the measurements at GBT and Parkes. This gap in Doppler coverage will eventually be closed by data from other radio telescopes which are presently being analysed. In addition, the entire global set of radio telescopes performed Very Long Baseline Interferometry (VLBI) recordings of the Huygens signal to determine the probe’s precise position during the descent.

“This is a stupendous example of the effectiveness of truly global scientific co-operation,” said Jean-Pierre Lebreton, ESA Huygens Project Scientist. “By combining the Doppler and VLBI data we will eventually obtain an extremely accurate three-dimensional record of the motion of Huygens during its mission at Titan,” he concluded.

Guido de Marchi | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMA8SXEM4E_0.html
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>