Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s fastest oscillating nanomachine holds promise for telecommunications, quantum computing

09.02.2005


BU team’s nanomechanical device bridges classic and quantum physics

Nanotechnology leapt into the realm of quantum mechanics this past winter when an antenna-like sliver of silicon one-tenth the width of a human hair oscillated in a lab in a Boston University basement. With two sets of protrusions, much like the teeth from a two-sided comb or the paddles from a rowing shell, the antenna not only exhibits the first quantum nanomechanical motion but is also the world’s fastest moving nanostructure.

A team of Boston University physicists led by Assistant Professor Pritiraj Mohanty developed the nanomechanical oscillator. Operating at gigahertz speeds, the technology could help further miniaturize wireless communication devices like cell phones, which exchange information at gigahertz frequencies. But, more important to the researchers, the oscillator lies at the cusp of classic physics, what people experience everyday, and quantum physics, the behavior of the molecular world.



Comprised of 50 billion atoms, the antenna built by Mohanty’s team is so far the largest structure to display quantum mechanical movements. "It’s a truly macroscopic quantum system," says Alexei Gaidarzhy, the paper’s lead author and a graduate student in the BU College of Engineering’s Department of Aerospace and Mechanical Engineering. The device is also the fastest of its kind, oscillating at 1.49 gigahertz, or 1.49 billion times a second, breaking the previous record of 1.02 gigahertz achieved by a nanomachine produced by another group.

According to Gaidarzhy, during the past several decades engineers have made phenomenal advances in information technology by shrinking electronic circuitry and devices to fit onto semiconductor chips. Shrinking electronic or mechanical systems further, he says, will inevitably require new paradigms involving quantum theory. For example, these mechanical/quantum mechanical hybrids could be used for quantum computing.

Because Mohanty’s nanomechanical oscillator is "large," the research team was able to attach electrical wiring to its surface in order to monitor tiny discrete quantum motion, behavior that exists in the realm of atoms and molecules.

At a certain frequency, the paddles begin to vibrate in concert, causing the central beam to move at that same high frequency, but at an increased and easily measured amplitude. Where each paddle moves only about a femtometer, roughly the diameter of an atom’s nucleus, the antenna moves over a distance of one-tenth of a picometer, a tiny distance that still translates to a 100-fold increase in amplitude.

When fabricating and testing the nanomechanical device, the researchers placed the entire apparatus, including the cryostat and monitoring devices, in a state-of-the-art, copper-walled, copper-floored room. This set-up shielded the experiment from unwanted vibration noise and electromagnetic radiation that could generate from outside electrical devices, such as cell phone signals, or even the movement of subway trains outside the building.

Even with these precautions, performing such novel experiments is tricky. "When it’s a new phenomenon, it’s best not to be guided by expectations based on conventional wisdom," says Gaidarzhy. "The philosophy here is to let the data speak for itself."

The group carries out the experiments under extremely cold conditions, at a temperature of 110 millikelvin, which is only a tenth of a degree above the absolute zero. When cooled to such a low temperature, the nanomechanical oscillator starts to jump between two discrete positions without occupying the physical space in between, a telltale sign of quantum behavior.

In addition to Gaidarzhy, Mohanty’s team consists of Guiti Zolfagharkhani, a graduate student, and Robert L. Badzey, a post-doctoral fellow in BU’s Physics Department. Their paper appears in the January 28, 2005 issue of Physical Review Letters. The research was supported by grants from the National Science Foundation, Department of Defense, Petroleum Research Fund, and the Sloan Foundation.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Physics and Astronomy:

nachricht Spinning rugby balls: The rotation of the most massive galaxies
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

nachricht Turning entanglement upside down
23.05.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>