Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics team puts new twist on spin hall effect

08.02.2005


An international team of physicists that includes a Texas A&M University professor has announced discovery of a new spintronic effect in semiconductor chips, the intrinsic spin Hall effect, which puts a new twist on future technology and the possibility for novel circuits with low energy consumption.



The team is formed by physicists Dr. Jörg Wunderlich and Dr. Bernd Kaestner from the Hitachi Cambridge Laboratory, U.K.; Prof. Tomás Jungwirth from the Institute of Physics of the Academy of Sciences of the Czech Republic and the University of Nottingham, U.K.; and Prof. Jairo Sinova from Texas A&M.

In a normal Hall effect, a voltage is created perpendicular to an electric current as it flows through a conductor in a magnetic field. The magnetic field deflects the moving charges to the sides of the conductor, resulting in an observable Hall voltage.


The spin Hall effect was first predicted in 1971. Here the moving electrons, which carry with them a tiny magnet called the "spin," collide with impurities and these collisions generate opposing magnetizations at the conductor’s edges.

Despite its intriguing ramifications, the theory disappeared into virtual obscurity until 1999, when it was rediscovered and further elaborated. Four years later, two independent teams, one including Sinova and Jungwirth, proposed a novel mechanism called the intrinsic spin Hall effect in which similar magnetization occurs without the need for collisions.

The prediction touched off a theoretical firestorm, resulting in more than 50 articles arguing for and against the possibility. As the heated debate raged on, Wunderlich and Kaestner developed a new type of device to measure magnetization at each side of a high-mobility, ultra-thin conducting layer embedded within a semiconductor chip using built-in light-emitting diodes.

Armed with this novel tool, Wunderlich and Kaestner teamed with Jungwirth and Sinova to observe the spin Hall effect. Their findings will be featured the February issue of Physics Today along with an independent and parallel observation of the effect in conventional bulk semiconductors.

Team members say the more than 10 times larger signal detected in the Hitachi device can be attributed to the special layered design of the semiconductor chip that yielded operation in a regime close to the intrinsic spin Hall effect.

"They are both beautiful experiments, and one of the most remarkable aspects is that they seem to be exploring opposite regimes," Sinova adds.

The possibility of generating magnetization without circulating currents has great implications in many areas, most notably the design of information processing and storage devices.

"Obviously we are only at the beginning of this journey of discovery," Sinova explains. "As you gather more facts, the truth tends to reveal itself. That’s the fun of science. We’re seeking to know, and we’re learning in the process."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>