Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics team puts new twist on spin hall effect

08.02.2005


An international team of physicists that includes a Texas A&M University professor has announced discovery of a new spintronic effect in semiconductor chips, the intrinsic spin Hall effect, which puts a new twist on future technology and the possibility for novel circuits with low energy consumption.



The team is formed by physicists Dr. Jörg Wunderlich and Dr. Bernd Kaestner from the Hitachi Cambridge Laboratory, U.K.; Prof. Tomás Jungwirth from the Institute of Physics of the Academy of Sciences of the Czech Republic and the University of Nottingham, U.K.; and Prof. Jairo Sinova from Texas A&M.

In a normal Hall effect, a voltage is created perpendicular to an electric current as it flows through a conductor in a magnetic field. The magnetic field deflects the moving charges to the sides of the conductor, resulting in an observable Hall voltage.


The spin Hall effect was first predicted in 1971. Here the moving electrons, which carry with them a tiny magnet called the "spin," collide with impurities and these collisions generate opposing magnetizations at the conductor’s edges.

Despite its intriguing ramifications, the theory disappeared into virtual obscurity until 1999, when it was rediscovered and further elaborated. Four years later, two independent teams, one including Sinova and Jungwirth, proposed a novel mechanism called the intrinsic spin Hall effect in which similar magnetization occurs without the need for collisions.

The prediction touched off a theoretical firestorm, resulting in more than 50 articles arguing for and against the possibility. As the heated debate raged on, Wunderlich and Kaestner developed a new type of device to measure magnetization at each side of a high-mobility, ultra-thin conducting layer embedded within a semiconductor chip using built-in light-emitting diodes.

Armed with this novel tool, Wunderlich and Kaestner teamed with Jungwirth and Sinova to observe the spin Hall effect. Their findings will be featured the February issue of Physics Today along with an independent and parallel observation of the effect in conventional bulk semiconductors.

Team members say the more than 10 times larger signal detected in the Hitachi device can be attributed to the special layered design of the semiconductor chip that yielded operation in a regime close to the intrinsic spin Hall effect.

"They are both beautiful experiments, and one of the most remarkable aspects is that they seem to be exploring opposite regimes," Sinova adds.

The possibility of generating magnetization without circulating currents has great implications in many areas, most notably the design of information processing and storage devices.

"Obviously we are only at the beginning of this journey of discovery," Sinova explains. "As you gather more facts, the truth tends to reveal itself. That’s the fun of science. We’re seeking to know, and we’re learning in the process."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>