Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intermetallic Mystery Solved With Atomic Resolution Microscope

07.02.2005


Intermetallics could be the key to faster jets and more efficient car engines. But these heat-resistant, lightweight compounds have stumped scientists for decades. Why do so many break so easily? A team from Brown University, Oak Ridge National Laboratory, and UES Inc. used the world’s most powerful electron microscope to see, for the first time, atomic details that may provide the answer for the most common class of intermetallics. Their results – which could open the door for new materials for commercial use – are published in the current issue of Science.


Atomic resolution Z-contrast image from the world’s most powerful microscope of a non-defective region of Cr2Hf. In this view, the hafnium atoms appear yellow and the chromium atoms are red. (Image: Sharvan Kumar)



Intermetallics can withstand searing heat and are often lightweight. These properties intrigue the aerospace, defense, energy and automotive industries, which are experimenting with this class of materials in hopes of building high-performance jet engines, improved rocket motors and missile components, more efficient steam turbines and better car engine valves.

Many intermetallics, however, break easily. These compounds are typically stronger than simple metals at high temperatures. Yet they are almost as fragile as ceramics at room temperature. This fragility limits their commercial use.


But why do most intermetallics shatter? How can that be prevented?

In a new report in Science, researchers from Brown University, Oak Ridge National Laboratory and UES Inc. for the first time describe detailed atomic arrangements in Laves phases – the most common class of intermetallics. Their discovery may be the first step in explaining the origin of this brittleness in some of these compounds.

“It has long been known that a dislocation, or crystal defect, moves when force is applied to a material. The easier it is to move this defect, the less brittle the material will be,” said Sharvan Kumar, professor of engineering at Brown University, who has studied Laves phases for more than a decade. “In materials with complex crystal structures, such as Laves phases, the atomic arrangement around these defects, and how these defects move, are not well understood.”

In the 1950s, a concept called “synchroshear” was proposed to explain how this defect moved in many complex structures. Under that theory, this movement is accomplished by coordinated shifting of atoms in two adjacent atomic layers. This synchronized movement is necessary to prevent atoms in one layer from colliding with atoms in the neighboring layer.

But because atoms are so tightly packed in compounds with complex structures, as they are in Laves phases, the theory could never be proven. There wasn’t a microscope powerful enough to show, in clear detail, how the atoms behaved.

Enter Matthew Chisholm, a staff researcher at Oak Ridge National Laboratory. Chisholm uses a unique Z-contrast scanning transmission electron microscope (STEM) to study defects in materials. The microscope was recently outfitted with an aberration-correction system, which corrects errors produced by imperfections in the electron lens. The system doubled the microscope’s resolving ability, making it the most powerful electron microscope on the planet.

Even though atoms in the test material – the Laves phase Cr2Hf – were spaced less than one ten-billionth of a meter away, the microscope produced crisp images of atoms arranged in tidy columns. Scientists put sheared material in the microscope, saw the defects and analyzed them.

“Aberration-correction combined with direct Z-contrast imaging produces an ideal technique to study unknown defect structures,” Chisholm said. “The resulting images have clearly shown for the first time that the accepted dislocation models built up over years of research on simple metals do not work in this more complex material.”

Kumar, who coordinated the project, said careful examination confirmed that synchroshear did indeed occur. “This is a first in science,” he said.

In the case of Laves phases, it is important to understand defect structures. With this knowledge, materials scientists may be able to identify methods that enhance their motion – and create intermetallic compounds that resist shattering.

The study illustrates the utility of Oak Ridge’s STEM in studying a variety of crystal structures and defects. The findings could be applied to materials with other complex structures, such as other classes of intermetallics as well as ceramics, inorganic salts and others.

The late Peter Hazzledine of UES Inc., a materials science research and development firm based in Dayton, Ohio, helped analyze and interpret the experimental results. Hazzledine was a leading authority on dislocation theory.

The U.S. Department of Energy’s Office of Basic Energy Sciences, the National Science Foundation-sponsored Materials Research Science and Engineering Center at Brown University, and the U.S Air Force Research Laboratory funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>