Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost and found: X-ray telescope locates missing matter

03.02.2005


NASATMs Chandra X-ray Observatory has discovered two huge intergalactic clouds of diffuse hot gas. These clouds are the best evidence yet that a vast cosmic web of hot gas contains the long-sought missing matter - about half of the atoms and ions in the Universe.



Various measurements give a good estimate of the mass-density of the baryons - the neutrons and protons that make up the nuclei of atoms and ions - in the Universe 10 billion years ago. However, sometime during the last 10 billion years a large fraction of the baryons, commonly referred to as extordinary matters to distinguish them from dark matter and dark energy, have gone missing.

"An inventory of all the baryons in stars and gas inside and outside of galaxies accounts for just over half the baryons that existed shortly after the Big Bang," explained Fabrizio Nicastro of the Harvard-Smithsonian Center for Astrophysics, and lead author of a paper in the 3 February 2005 issue of Nature describing the recent research. "Now we have found the likely hiding place of the missing baryons."


Nicastro and colleagues did not just stumble upon the missing baryons" they went looking for them. Computer simulations of the formation of galaxies and galaxy clusters indicated that the missing baryons might be contained in an extremely diffuse web-like system of gas clouds from which galaxies and clusters of galaxies formed.

These clouds have defied detection because of their predicted temperature range of a few hundred thousand to a million degrees Celsius, and their extremely low density. Evidence for this warm-hot intergalactic matter (WHIM) had been detected around our Galaxy, or in the Local Group of galaxies, but the lack of definitive evidence for WHIM outside our immediate cosmic neighborhood made any estimates of the universal mass-density of baryons unreliable.

The discovery of much more distant clouds came when the team took advantage of the historic X-ray brightening of the quasar-like galaxy Mkn 421 that began in October of 2002. Two Chandra observations of Mkn 421 in October 2002 and July 2003, yielded excellent quality X-ray spectral data. These data showed that two separate clouds of hot gas at distances from Earth of 150 million light years and 370 million light years were filtering out, or absorbing X-rays from Mkn 421.

The X-ray data show that ions of carbon, nitrogen, oxygen, and neon are present, and that the temperatures of the clouds are about 1 million degrees Celsius. Combining these data with observations at ultraviolet wavelengths enabled the team to estimate the thickness (about 2 million light years) and mass density of the clouds.

Assuming that the size and distribution of the clouds are representative, Nicastro and colleagues could make the first reliable estimate of average mass density of baryons in such clouds throughout the Universe. They found that it is consistent with the mass density of the missing baryons.

Mkn 421 was observed three times with ChandraTMs Low-Energy Transmission Grating (LETG), twice in conjunction with the High Resolution Camera (May 2000 and July 2003) and once with the Advanced CCD Imaging Spectrometer (October 2002). The distance to Mkn 421 is 400 million light years.

Megan Watzke | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht The fastest light-driven current source
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht An international team of physicists a coherent amplification effect in laser excited dielectrics
25.09.2017 | Universität Kassel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>