Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rat Whisking May Provide Insight Into Debilitating Eye Disorder

03.02.2005


A rat’s whiskers Credit: Samar B. Metha, UCSD


Physicists at the University of California, San Diego have discovered a neural circuit in rats that could provide a powerful model for understanding a neurological condition known as blepharospasm—uncontrolled eye blinking that affects 50,000 people in the U.S. and leaves some patients functionally blind.

In the February 3 issue of the journal Neuron, the researchers, Quoc-Thang Nguyen and David Kleinfeld, describe the brain circuit, which coordinates sensory inputs and muscle activity in rats’ whiskers. It is the first discovery of a reflex circuit that functions to boost the amount of incoming sensory information. Because the neural wiring of the rat whiskers appears to be identical to the circuit that controls eyeblinking in humans, the UCSD scientists believe it could be used for pioneering new treatments for blepharospasm.

“We have been studying the rat whisker system as an example to help us understand how sensory systems control where the sensors are in space and how the sensors are moved,” said Nguyen, an assistant project scientist in UCSD’s physics department. “Our study is the first to find a neural circuit responsible for keeping sensors on an object during active touch.”



“We hope that this finding will help push the field from a focus biased by anatomy to a focus centered on functionality of neural circuits,” added David Kleinfeld, a professor of physics at UCSD. “Also, this circuit could serve as a model system to deepen our understanding of a pathology in the human eyeblink circuit.”

The only neural circuits controlling reflexes that had been identified prior to the UCSD physicists’ discovery were negative feedback loops, in which sensory input leads to motor output that withdraws sensors from the source of a stimulus. For example, such a reflex occurs if you accidentally touch a hot stove.

On the other hand, the newly discovered reflex circuit that controls rats’ whiskers as rats explore their environment is a positive feedback loop. It helps rats keep their whiskers on an object, enabling them to gather an uninterrupted stream of sensory information.

Nguyen commented that positive feedback loops make engineers “squeamish” because, if uncontrolled, they can create a vicious cycle. For example, in a furnace controlled by positive feedback, rather than negative feedback, the warmer a room became the more the thermostat would signal the furnace to turn on.

This type of vicious cycle appears to occur in blepharospasm. Normally, the blinking reflex protects the eye from bright light and other environmental hazards, but in blepharospasm this blinking response gets out of control. The resulting muscle spasms can be so intense that the eyelids remain forcefully closed for several hours at a time.

“The human eyeblink reflex circuit appears to share a common anatomy and physiology with the neural circuit that controls rat whiskers,” said Kleinfeld. “Actually, it isn’t unusual to see the repetition of neural circuits with the same design principles in different systems.”

As with blinking in humans, rat whisking does not normally turn into a vicious cycle. However, certain chemicals that interfere with normal communication between nerve cells can cause unintentional whisking in rats. By studying what mechanisms usually keep rat whisker movements in check, researchers can develop a better understanding of what causes the eyeblink reflex to go awry.

“Until now, treatment for blepharospasm has been mostly trial and error,” said Nguyen. “Our findings should permit a more principled approach to the development of new medications and therapies.”

The researchers also said their findings underscore the importance of basic scientific research. Nguyen called the connection to blepharospasm a “serendipitous” outcome of their work. Kleinfeld added that their finding is just one example that shows the growing trend to fund research on diseases at the expense of basic science may be unwise and counterproductive.

“We need to understand how a system works when it is normal in order to understand what goes wrong when it is broken,” he said.

Their research was supported by grants from the National Institutes of Health and the Human Frontiers Scientific Program.

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>