Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rat Whisking May Provide Insight Into Debilitating Eye Disorder


A rat’s whiskers Credit: Samar B. Metha, UCSD

Physicists at the University of California, San Diego have discovered a neural circuit in rats that could provide a powerful model for understanding a neurological condition known as blepharospasm—uncontrolled eye blinking that affects 50,000 people in the U.S. and leaves some patients functionally blind.

In the February 3 issue of the journal Neuron, the researchers, Quoc-Thang Nguyen and David Kleinfeld, describe the brain circuit, which coordinates sensory inputs and muscle activity in rats’ whiskers. It is the first discovery of a reflex circuit that functions to boost the amount of incoming sensory information. Because the neural wiring of the rat whiskers appears to be identical to the circuit that controls eyeblinking in humans, the UCSD scientists believe it could be used for pioneering new treatments for blepharospasm.

“We have been studying the rat whisker system as an example to help us understand how sensory systems control where the sensors are in space and how the sensors are moved,” said Nguyen, an assistant project scientist in UCSD’s physics department. “Our study is the first to find a neural circuit responsible for keeping sensors on an object during active touch.”

“We hope that this finding will help push the field from a focus biased by anatomy to a focus centered on functionality of neural circuits,” added David Kleinfeld, a professor of physics at UCSD. “Also, this circuit could serve as a model system to deepen our understanding of a pathology in the human eyeblink circuit.”

The only neural circuits controlling reflexes that had been identified prior to the UCSD physicists’ discovery were negative feedback loops, in which sensory input leads to motor output that withdraws sensors from the source of a stimulus. For example, such a reflex occurs if you accidentally touch a hot stove.

On the other hand, the newly discovered reflex circuit that controls rats’ whiskers as rats explore their environment is a positive feedback loop. It helps rats keep their whiskers on an object, enabling them to gather an uninterrupted stream of sensory information.

Nguyen commented that positive feedback loops make engineers “squeamish” because, if uncontrolled, they can create a vicious cycle. For example, in a furnace controlled by positive feedback, rather than negative feedback, the warmer a room became the more the thermostat would signal the furnace to turn on.

This type of vicious cycle appears to occur in blepharospasm. Normally, the blinking reflex protects the eye from bright light and other environmental hazards, but in blepharospasm this blinking response gets out of control. The resulting muscle spasms can be so intense that the eyelids remain forcefully closed for several hours at a time.

“The human eyeblink reflex circuit appears to share a common anatomy and physiology with the neural circuit that controls rat whiskers,” said Kleinfeld. “Actually, it isn’t unusual to see the repetition of neural circuits with the same design principles in different systems.”

As with blinking in humans, rat whisking does not normally turn into a vicious cycle. However, certain chemicals that interfere with normal communication between nerve cells can cause unintentional whisking in rats. By studying what mechanisms usually keep rat whisker movements in check, researchers can develop a better understanding of what causes the eyeblink reflex to go awry.

“Until now, treatment for blepharospasm has been mostly trial and error,” said Nguyen. “Our findings should permit a more principled approach to the development of new medications and therapies.”

The researchers also said their findings underscore the importance of basic scientific research. Nguyen called the connection to blepharospasm a “serendipitous” outcome of their work. Kleinfeld added that their finding is just one example that shows the growing trend to fund research on diseases at the expense of basic science may be unwise and counterproductive.

“We need to understand how a system works when it is normal in order to understand what goes wrong when it is broken,” he said.

Their research was supported by grants from the National Institutes of Health and the Human Frontiers Scientific Program.

Sherry Seethaler | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>