Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rat Whisking May Provide Insight Into Debilitating Eye Disorder


A rat’s whiskers Credit: Samar B. Metha, UCSD

Physicists at the University of California, San Diego have discovered a neural circuit in rats that could provide a powerful model for understanding a neurological condition known as blepharospasm—uncontrolled eye blinking that affects 50,000 people in the U.S. and leaves some patients functionally blind.

In the February 3 issue of the journal Neuron, the researchers, Quoc-Thang Nguyen and David Kleinfeld, describe the brain circuit, which coordinates sensory inputs and muscle activity in rats’ whiskers. It is the first discovery of a reflex circuit that functions to boost the amount of incoming sensory information. Because the neural wiring of the rat whiskers appears to be identical to the circuit that controls eyeblinking in humans, the UCSD scientists believe it could be used for pioneering new treatments for blepharospasm.

“We have been studying the rat whisker system as an example to help us understand how sensory systems control where the sensors are in space and how the sensors are moved,” said Nguyen, an assistant project scientist in UCSD’s physics department. “Our study is the first to find a neural circuit responsible for keeping sensors on an object during active touch.”

“We hope that this finding will help push the field from a focus biased by anatomy to a focus centered on functionality of neural circuits,” added David Kleinfeld, a professor of physics at UCSD. “Also, this circuit could serve as a model system to deepen our understanding of a pathology in the human eyeblink circuit.”

The only neural circuits controlling reflexes that had been identified prior to the UCSD physicists’ discovery were negative feedback loops, in which sensory input leads to motor output that withdraws sensors from the source of a stimulus. For example, such a reflex occurs if you accidentally touch a hot stove.

On the other hand, the newly discovered reflex circuit that controls rats’ whiskers as rats explore their environment is a positive feedback loop. It helps rats keep their whiskers on an object, enabling them to gather an uninterrupted stream of sensory information.

Nguyen commented that positive feedback loops make engineers “squeamish” because, if uncontrolled, they can create a vicious cycle. For example, in a furnace controlled by positive feedback, rather than negative feedback, the warmer a room became the more the thermostat would signal the furnace to turn on.

This type of vicious cycle appears to occur in blepharospasm. Normally, the blinking reflex protects the eye from bright light and other environmental hazards, but in blepharospasm this blinking response gets out of control. The resulting muscle spasms can be so intense that the eyelids remain forcefully closed for several hours at a time.

“The human eyeblink reflex circuit appears to share a common anatomy and physiology with the neural circuit that controls rat whiskers,” said Kleinfeld. “Actually, it isn’t unusual to see the repetition of neural circuits with the same design principles in different systems.”

As with blinking in humans, rat whisking does not normally turn into a vicious cycle. However, certain chemicals that interfere with normal communication between nerve cells can cause unintentional whisking in rats. By studying what mechanisms usually keep rat whisker movements in check, researchers can develop a better understanding of what causes the eyeblink reflex to go awry.

“Until now, treatment for blepharospasm has been mostly trial and error,” said Nguyen. “Our findings should permit a more principled approach to the development of new medications and therapies.”

The researchers also said their findings underscore the importance of basic scientific research. Nguyen called the connection to blepharospasm a “serendipitous” outcome of their work. Kleinfeld added that their finding is just one example that shows the growing trend to fund research on diseases at the expense of basic science may be unwise and counterproductive.

“We need to understand how a system works when it is normal in order to understand what goes wrong when it is broken,” he said.

Their research was supported by grants from the National Institutes of Health and the Human Frontiers Scientific Program.

Sherry Seethaler | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>