Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gamma-ray space observatory fully operational

02.02.2005


The third telescope aboard NASA’s Swift gamma-ray observatory, the Ultraviolet/Optical Telescope (UVOT) with key involvement from UK scientists at University College London’s Mullard Space Science Laboratory, has seen first light and is now poised to observe its first gamma-ray burst. The UVOT captured an image of the Pinwheel Galaxy, known by amateur astronomers as the ‘perfect’ face-on spiral galaxy. With the UVOT turned on the Swift observatory is fully operational. Swift’s two other instruments - the Burst Alert Telescope (BAT) and the X-ray Telescope (XRT) with University of Leicester involvement - were turned on over the last few weeks and have been snapping up gamma-ray bursts ever since.



Swift is a NASA-led mission dedicated to unravelling the mysteries of gamma-ray bursts - random and fleeting explosions that signal the likely birth of black holes. "This was a real treat to point the UVOT toward the famous Pinwheel Galaxy, M101," said Dr. Peter Roming, UVOT Lead Scientist at the US Penn State University. "The ultraviolet wavelengths in particular reveal regions of star formation in the galaxy’s spiral arms. But more than a pretty image, this first-light observation is a test of the UVOT’s capabilities."

Swift’s three telescopes work in unison. The BAT instrument detects gamma-ray bursts and autonomously turns the satellite in seconds to bring the burst within view of the XRT and the UVOT, which provide detailed follow-up observations of the burst afterglow. Although the burst itself is gone within seconds, scientists can study the afterglow for clues about the origin and nature of the burst, much like detectives at a crime scene.


The UVOT serves several important functions. First, it will pinpoint the gamma-ray burst location a few minutes after the BAT detection. The XRT provides a burst position within a 1- to 2-arcsecond range. The UVOT will provide sub-arcsecond precision, a spot on the sky about as wide as the eye of a needle at arm’s length. This information is then relayed to scientists at observatories around the world so that they can view the afterglow with other telescopes.

As the name implies, the UVOT captures the optical and ultraviolet component of the fading burst afterglow. Prof. Keith Mason, the UK UVOT lead at University College London’s Mullard Space Science Laboratory explains, “The ’big gun’ optical observatories such as Hubble and Keck have provided useful data over the years, but only for the later portion of the afterglow. The UVOT isn’t as powerful as these observatories, but has the advantage of observing from the very dark skies of space. Moreover it will start observing the burst afterglow within minutes, as opposed to the day or weeklong delay inherent with heavily used observatories. This is extremely important because the bulk of the afterglow fades within hours."

The ultraviolet portion will be particularly revealing, says Roming. "We know nearly nothing about the ultraviolet part of a gamma-ray burst afterglow," he said. "This is because the atmosphere blocks most ultraviolet rays from reaching telescopes on Earth, and there have been few ultraviolet telescopes in orbit. We simply haven’t yet reached a burst fast enough with an ultraviolet telescope."

The UVOT’s imaging capability will enable scientists to understand the shape of the afterglow as it evolves and fades. The telescope’s spectral capability will enable detailed analysis of the dynamics of the afterglow, such as the temperature, velocity and direction of material ejected in the explosion.

The UVOT will also help scientists determine the distance to the closer gamma-ray bursts, within a redshift of 4, which corresponds to a distance of about 12 billion light years. The XRT will determine distances to more distant bursts. Scientists hope to use the UVOT and XRT to observe the afterglow of short bursts, less than two seconds long. Such afterglows have not yet been seen; it is not clear if they fade fast or simply don’t exist. Some scientists think there are at least two kinds of gamma-ray bursts: longer ones (more than two seconds) that generate afterglows and that seem to be caused by massive star explosions; and shorter ones that may be caused by mergers of black holes or neutron stars. The UVOT and XRT will help rule out various theories and scenarios.

The UVOT is a 30-centimeter telescope with intensified CCD detectors and is nearly identical to an instrument on the European Space Agency’s XMM-Newton mission. The UVOT is as sensitive as a four-meter optical ground-based telescope. The UVOT’s day-to-day observations, however, will look nothing like the Pinwheel Galaxy. Distant and faint gamma-ray burst afterglows will appear as tiny smudges of light even to the powerful UVOT. The UVOT is a joint product of Penn State and the Mullard Space Science Laboratory.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/UVOT_images.asp and http://swift.gsfc.nasa.gov
http://www.pparc.ac.uk/Nw/first_light.asp

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>