Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gamma-ray space observatory fully operational


The third telescope aboard NASA’s Swift gamma-ray observatory, the Ultraviolet/Optical Telescope (UVOT) with key involvement from UK scientists at University College London’s Mullard Space Science Laboratory, has seen first light and is now poised to observe its first gamma-ray burst. The UVOT captured an image of the Pinwheel Galaxy, known by amateur astronomers as the ‘perfect’ face-on spiral galaxy. With the UVOT turned on the Swift observatory is fully operational. Swift’s two other instruments - the Burst Alert Telescope (BAT) and the X-ray Telescope (XRT) with University of Leicester involvement - were turned on over the last few weeks and have been snapping up gamma-ray bursts ever since.

Swift is a NASA-led mission dedicated to unravelling the mysteries of gamma-ray bursts - random and fleeting explosions that signal the likely birth of black holes. "This was a real treat to point the UVOT toward the famous Pinwheel Galaxy, M101," said Dr. Peter Roming, UVOT Lead Scientist at the US Penn State University. "The ultraviolet wavelengths in particular reveal regions of star formation in the galaxy’s spiral arms. But more than a pretty image, this first-light observation is a test of the UVOT’s capabilities."

Swift’s three telescopes work in unison. The BAT instrument detects gamma-ray bursts and autonomously turns the satellite in seconds to bring the burst within view of the XRT and the UVOT, which provide detailed follow-up observations of the burst afterglow. Although the burst itself is gone within seconds, scientists can study the afterglow for clues about the origin and nature of the burst, much like detectives at a crime scene.

The UVOT serves several important functions. First, it will pinpoint the gamma-ray burst location a few minutes after the BAT detection. The XRT provides a burst position within a 1- to 2-arcsecond range. The UVOT will provide sub-arcsecond precision, a spot on the sky about as wide as the eye of a needle at arm’s length. This information is then relayed to scientists at observatories around the world so that they can view the afterglow with other telescopes.

As the name implies, the UVOT captures the optical and ultraviolet component of the fading burst afterglow. Prof. Keith Mason, the UK UVOT lead at University College London’s Mullard Space Science Laboratory explains, “The ’big gun’ optical observatories such as Hubble and Keck have provided useful data over the years, but only for the later portion of the afterglow. The UVOT isn’t as powerful as these observatories, but has the advantage of observing from the very dark skies of space. Moreover it will start observing the burst afterglow within minutes, as opposed to the day or weeklong delay inherent with heavily used observatories. This is extremely important because the bulk of the afterglow fades within hours."

The ultraviolet portion will be particularly revealing, says Roming. "We know nearly nothing about the ultraviolet part of a gamma-ray burst afterglow," he said. "This is because the atmosphere blocks most ultraviolet rays from reaching telescopes on Earth, and there have been few ultraviolet telescopes in orbit. We simply haven’t yet reached a burst fast enough with an ultraviolet telescope."

The UVOT’s imaging capability will enable scientists to understand the shape of the afterglow as it evolves and fades. The telescope’s spectral capability will enable detailed analysis of the dynamics of the afterglow, such as the temperature, velocity and direction of material ejected in the explosion.

The UVOT will also help scientists determine the distance to the closer gamma-ray bursts, within a redshift of 4, which corresponds to a distance of about 12 billion light years. The XRT will determine distances to more distant bursts. Scientists hope to use the UVOT and XRT to observe the afterglow of short bursts, less than two seconds long. Such afterglows have not yet been seen; it is not clear if they fade fast or simply don’t exist. Some scientists think there are at least two kinds of gamma-ray bursts: longer ones (more than two seconds) that generate afterglows and that seem to be caused by massive star explosions; and shorter ones that may be caused by mergers of black holes or neutron stars. The UVOT and XRT will help rule out various theories and scenarios.

The UVOT is a 30-centimeter telescope with intensified CCD detectors and is nearly identical to an instrument on the European Space Agency’s XMM-Newton mission. The UVOT is as sensitive as a four-meter optical ground-based telescope. The UVOT’s day-to-day observations, however, will look nothing like the Pinwheel Galaxy. Distant and faint gamma-ray burst afterglows will appear as tiny smudges of light even to the powerful UVOT. The UVOT is a joint product of Penn State and the Mullard Space Science Laboratory.

Julia Maddock | alfa
Further information: and

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>