Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists discover temperature key to avalanche movement


100 years after Einstein’s landmark work on Brownian motion, physicists have discovered a new concept of temperature that could be the key to explaining how ice and snow particles flow during an avalanche, and could lead to a better way of handling tablets in the pharmaceutical industry. This research is reported today in a special Einstein Year issue of the New Journal of Physics published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellschaft).

Everything from powdery snow to desert sands, from salt to corn flakes are granular materials. Physicists have known for many years that granular materials have many perplexing properties that make them behave at times liquid solids, liquids, and even gases. This new research reveals for the first time how to measure a concept called "granular temperature" – that could be the key to explaining how they behave.

"Take the solid snow covering a ski slope, for instance", suggests lead author of the paper Patrick Mayor of the EPFL in Lausanne, Switzerland. "While it stays still it is a solid, but as soon as it starts flowing downhill as happens during an avalanche the flowing material is behaving more like a liquid. Similarly, during a desert storm, sand grains are whipped up and behave like molecules in a gas, rather than as a solid".

"Whereas most materials are usually described as solid, liquid or gases, granular systems do not seem to fall into any of these categories and are often considered a separate state of matter of their own," says Mayor, "The diverse behaviour of granular materials makes it extremely difficult to establish a general theory that accounts for the observed phenomena."

Mayor and his colleagues, Gianfranco D’Anna, Alain Barrat, Vittorio Loreto, have shown that shaken granular matter behaves in a way related to Einstein’s theory of Brownian motion, first published in 1905.

The temperature of an object reflects the random motion of its constituent parts. For instance, the faster the molecules in a gas or liquid are moving around the higher the temperature of the material.

Temperature also measures the degree of agitation of molecules in a liquid or a gas. Mayor and his colleagues have now devised a thermometer that can measure the temperature of a granular material based on the degree of agitation of its component particles. The researchers also discovered that, unlike usual liquids, temperature varies depending on which way and how far they insert the "thermometer" into the granular material.

Being able to measure "temperature" might allow researchers to better understand the peculiar properties of a granular material, which is of crucial importance to industries that handle powders and particulate materials from pharmaceutical pills and food powders to sand and cement in the construction industry.

David Reid | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>