Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical tweezers to prove Einstein right

31.01.2005


100 years after Einstein’s landmark paper, optical tweezer technology could confirm the theory of classical Brownian motion in details that Einstein missed when he first proposed it a century ago. This research is reported today in a special Einstein Year issue of the New Journal of Physics (www.njp.org) published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellschaft).



“Optical tweezers” use a focused laser beam to trap and study microscopic objects, such as the individual bio-molecules that power muscle cells and propel sperm, and those that read the genetic code. The device is disturbed, however, by a subtle effect in Brownian motion known as the back-flow effect.

100 years ago in 1905, Einstein published a landmark paper on Brownian motion. He theorised that it is the constant buffeting of microscopic particles that goes on in any fluid as the fluid molecules randomly knock those particles around. He missed the subtle "back-flow effect" in which the very movement of a particle disturbs the water which ultimately bounces back to nudge the particle in return. "It’s like a boat that tries to stop, and then is pushed by its stern wave when that wave catches up with the boat," explains Henrik Flyvbjerg of Risø National Laboratory in Denmark. "Optical tweezers sense the back-flow effect," adds Flyvbjerg, "but that also means it can be studied with them."


Einstein described Brownian motion as arising from the "white" noise of random molecular motion due to heat. But, the back-flow effect makes higher frequencies slightly more likely, making the white noise "bluey white". Flyvbjerg and his colleagues demonstrate that optical tweezers technology is now at the point where this colour shift can be measured directly. He is collaborating with Stanford University’s Steve Block to push the technology to do it. If successful, they will confirm Brownian motion’s last unobserved trait, 100 years after Einstein’s initial theory for it.

David Reid | alfa
Further information:
http://www.iop.org
http://stacks.iop.org/1367-2630/7/i=1/a=E01

More articles from Physics and Astronomy:

nachricht A Keen Sense for Molecules
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Good vibrations feel the force
23.02.2018 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>