Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists discover temperature key to avalanche movement

31.01.2005


100 years after Einstein’s landmark work on Brownian motion, physicists have discovered a new concept of temperature that could be the key to explaining how ice and snow particles flow during an avalanche, and could also lead to a better way of handling tablets in the pharmaceutical industry. This research is reported today in a special Einstein Year issue of the New Journal of Physics (www.njp.org) published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellschaft).



Everything from powdery snow to desert sands, from salt to corn flakes are granular materials. Physicists have known for many years that granular materials have many perplexing properties that make them behave at times like solids, liquids, and even gases. This new research reveals for the first time how to measure a concept called “granular temperature” – that could be the key to explaining how they behave. “Take the solid snow covering a ski slope, for instance”, suggests lead author of the paper Patrick Mayor of the EPFL in Lausanne, Switzerland. “While it stays still it is a solid, but as soon as it starts flowing downhill as happens during an avalanche the flowing material is behaving more like a liquid. Similarly, during a desert storm, sand grains are whipped up and behave like molecules in a gas, rather than as a solid”.

"Whereas most materials are usually described as solid, liquid or gases, granular systems do not seem to fall into any of these categories and are often considered a separate state of matter of their own," says Mayor, "The diverse behaviour of granular materials makes it extremely difficult to establish a general theory that accounts for the observed phenomena." Mayor and his colleagues, Gianfranco D’Anna, Alain Barrat, Vittorio Loreto, have shown that shaken granular matter behaves in a way related to Einstein’s theory of Brownian motion, first published in 1905.


The temperature of an object reflects the random motion of its constituent parts. For instance, the faster the molecules in a gas or liquid are moving around the higher the temperature of the material. Temperature also measures the degree of agitation of molecules in a liquid or a gas. Mayor and his colleagues have now devised a thermometer that can measure the temperature of a granular material based on the degree of agitation of its component particles. The researchers also discovered that, unlike usual liquids, temperature varies depending on which way and how far they insert the "thermometer" into the granular material.

Being able to measure "granular temperature" might allow researchers to better understand the peculiar properties of a granular material, which is of crucial importance to industries that handle powders and particulate materials from pharmaceutical pills and food powders to sand and cement in the construction industry.

David Reid | alfa
Further information:
http://www.iop.org
http://stacks.iop.org/1367-2630/7/28

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>