Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser applications heat up for carbon nanotubes

27.01.2005


Carbon nanotubes---a hot nanotechnology with many potential uses---may find one of its quickest applications in the next generation of standards for optical power measurements, which are essential for laser systems used in manufacturing, medicine, communications, lithography, space-based sensors and other technologies.



As described in a forthcoming paper in Applied Optics,* scientists at the National Institute of Standards and Technology (NIST) and the National Renewable Energy Laboratory have made prototype pyroelectric detectors coated with carbon nanotubes. Pyroelectric detectors and other thermal detectors are the basis for all primary standards used to ensure that laser power and energy measurements are traceable to fundamental units. The coating absorbs laser light and converts it to heat, which is conducted to a detector underneath made of pyroelectric material. The detector’s rise in temperature generates a current, which is measured to determine the power of the laser.

Carbon nanotubes---tiny cylinders made of carbon atoms---conduct heat hundreds of times better than today’s detector coating materials. Nanotubes are also resistant to laser damage and, because of their texture and crystal properties, absorb light efficiently. Scientists hope that the nanotubes’ resistance to aging and hardening will allow them to extend the range of NIST laser power standards to ultraviolet wavelengths, which would support the development and calibration of sensors for detecting chemical and biological weapons. The research also may contribute to the use of carbon nanotubes in fuel cells.


As described in the paper, the NIST-led research team was first to demonstrate the use of an airbrush technique to apply carbon nanotubes to a thermal detector. The team also will report, at a workshop on carbon nanotubes at NIST Jan. 26-28, growing multiwalled nanotubes directly on detectors with a chemical vapor deposition process. The team is now measuring the optical and thermal properties of various tube compositions and topologies, using an unusual approach that is much faster than conventional methods.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>