Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite discovery supports theory on supernova role in solar system creation

25.01.2005


Clear evidence in a Chinese meteorite for the past presence of chlorine-36, a short-lived radioactive isotope, lends further support to the controversial concept that a nearby supernova blast was involved in the formation of our solar system, according to a report forthcoming in the February 1 issue of the Proceedings of the National Academy of Sciences (to be published online today).



Known as the Ningqiang carbonaceous chondrite, the primitive meteorite is a space relic that formed shortly after the solar system’s creation. It contains pockets of still older materials or "inclusions" that contain that contain calcium, aluminum and sodalite, a chlorine-rich mineral.

A Chinese-American team of scientists including Yangting Lin, Ziyuan Ouyang and Daode Wang from the Chinese Academy of Sciences, and Yunbin Guan and Laurie Leshin from Arizona State University found the rare isotope sulfur-36 in association with the sodalite. Though it can be formed in various ways, sulfur-36 is a natural decay product of chlorine-36 and its association with the chlorine in the sodalite is thus strong evidence for the past presence of chlorine-36, which has a half-life of only 300,000 years, in the early solar system.


The solar system’s chlorine-36 could have formed in two different ways – either in the explosion of a supernova or in the irradiation of a nebular cloud near the forming Sun. The irradiation explanation is unlikely in this case, however, since the mineral the chlorine-36 was discovered in must have formed a significant distance from the sun.

"There is no ancient live chlorine-36 in the solar system now," said Leshin, who is director of ASU’s Center for Meteorite Studies. "But this is direct evidence that it was here in the early solar system.

"We have now discovered the first solid evidence for two different short-lived radionuclides in the GeoSIMS Lab at ASU – iron-60 and chlorine-36 -- and both of them provide strong evidence for where the solar system’s short-lived radionuclides came from. It’s producing a really strong argument that these radionuclides were produced in a supernova that exploded near the forming solar system and seeded the solar system with these isotopes."

In a "Perspectives" article in the journal Science last spring, Leshin and others argued that the presence of iron-60 was evidence that the solar system formed as a result of violent star-creation processes in a dense nebula rife with short-lived, high-mass stars and supernovas – a very different creation story than the traditional view that the solar system formed from a slowly condensing molecular cloud. (To see the release on the Science paper, see http://www.asu.edu/asunews/research/sun_earth_creation.htm )

Leshin points out that the current paper is part of a growing collaboration between space sciences at ASU and the Chinese science community, in this case being driven by Guan, a native of China, and manager of the ASU GeoSIMS Lab.

"Lin, the first author on this paper, was a visiting fellow in our lab for six months. We’ve published several papers on meteorites with groups in China – it’s a very fruitful relationship," she said.

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>