Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite discovery supports theory on supernova role in solar system creation

25.01.2005


Clear evidence in a Chinese meteorite for the past presence of chlorine-36, a short-lived radioactive isotope, lends further support to the controversial concept that a nearby supernova blast was involved in the formation of our solar system, according to a report forthcoming in the February 1 issue of the Proceedings of the National Academy of Sciences (to be published online today).



Known as the Ningqiang carbonaceous chondrite, the primitive meteorite is a space relic that formed shortly after the solar system’s creation. It contains pockets of still older materials or "inclusions" that contain that contain calcium, aluminum and sodalite, a chlorine-rich mineral.

A Chinese-American team of scientists including Yangting Lin, Ziyuan Ouyang and Daode Wang from the Chinese Academy of Sciences, and Yunbin Guan and Laurie Leshin from Arizona State University found the rare isotope sulfur-36 in association with the sodalite. Though it can be formed in various ways, sulfur-36 is a natural decay product of chlorine-36 and its association with the chlorine in the sodalite is thus strong evidence for the past presence of chlorine-36, which has a half-life of only 300,000 years, in the early solar system.


The solar system’s chlorine-36 could have formed in two different ways – either in the explosion of a supernova or in the irradiation of a nebular cloud near the forming Sun. The irradiation explanation is unlikely in this case, however, since the mineral the chlorine-36 was discovered in must have formed a significant distance from the sun.

"There is no ancient live chlorine-36 in the solar system now," said Leshin, who is director of ASU’s Center for Meteorite Studies. "But this is direct evidence that it was here in the early solar system.

"We have now discovered the first solid evidence for two different short-lived radionuclides in the GeoSIMS Lab at ASU – iron-60 and chlorine-36 -- and both of them provide strong evidence for where the solar system’s short-lived radionuclides came from. It’s producing a really strong argument that these radionuclides were produced in a supernova that exploded near the forming solar system and seeded the solar system with these isotopes."

In a "Perspectives" article in the journal Science last spring, Leshin and others argued that the presence of iron-60 was evidence that the solar system formed as a result of violent star-creation processes in a dense nebula rife with short-lived, high-mass stars and supernovas – a very different creation story than the traditional view that the solar system formed from a slowly condensing molecular cloud. (To see the release on the Science paper, see http://www.asu.edu/asunews/research/sun_earth_creation.htm )

Leshin points out that the current paper is part of a growing collaboration between space sciences at ASU and the Chinese science community, in this case being driven by Guan, a native of China, and manager of the ASU GeoSIMS Lab.

"Lin, the first author on this paper, was a visiting fellow in our lab for six months. We’ve published several papers on meteorites with groups in China – it’s a very fruitful relationship," she said.

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>