Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find evidence of electrical charging of nanocatalysts


Researchers at the Georgia Institute of Technology and Technical University Munch have discovered evidence of a phenomenon that may lead to drastically lowering the cost of manufacturing of materials from plastics to fertilizers. Studying nano-sized clusters of gold on a magnesium oxide surface, scientists found direct evidence for electrical charging of a nano-sized catalyst. This is an important factor in increasing the rate of chemical reactions. The research will appear in the 21 January, 2005, issue of the journal Science, published by the AAAS, the science society, the world’s largest general scientific organization. See, and also

"The fabrication of most synthetic materials that we use involves using catalysts to promote reaction rates," said Uzi Landman, director of the Center for Computational Materials Science, Regents’ professor and Callaway chair of physics at Georgia Tech. "Designing catalysts that are more efficient, more selective and more specific to a certain type of reaction can lead to significant savings in manufacturing expenses. Understanding the principles that govern nanocatalysis is key to developing more effective catalysts."

The current study builds on joint research done since 1999 by the two groups that found gold, which is non-reactive in its bulk form, is a very effective catalyst when it’s in nanoclusters of eight to about two dozen atoms in size. Those specific sizes allow the gold clusters to take on a three-dimensional structure, which is important for its reactivity.

"It is possible to tune the catalytic process not only by changing the composition of the materials, but also by changing the cluster’s size atom by atom," explained Ueli Heiz, professor of chemistry at Technical University Munich.

In these earlier studies of the reaction where carbon monoxide and molecular oxygen combine to form carbon dioxide, Landman’s group used computer simulations to predict that when gold nanoclusters of eight atoms are used as the catalyst and magnesium oxide is used as the catalytic bed, reactions would occur when the bed had defects in the form of missing oxygen atoms, but would not occur when the magnesium oxide was defect-free.

Heiz’s experiments confirmed this prediction and the teams concluded that the gold must be anchoring itself to the defect where it picks up an electron, giving the gold a slight negative charge. Theoretical simulations showed that the electronic structure of the gold clusters match up with the oxygen and carbon monoxide. The charged gold transfers an electron to the reacting molecules, weakening the chemical bonds that keep them together. Once the bond is weak enough it breaks, allowing reactions to occur.

Now, in this latest study, the group has found direct evidence that this is indeed what is happening. Using eight-atom gold clusters as the catalyst and magnesium oxide as the catalytic bed, the team measured and calculated the strength of the bonds in the carbon monoxide by recording the frequency of the molecule’s vibrations.

"If carbon monoxide is a strong bond, then there is a certain frequency to this vibration," explained Landman. "If the bond of the carbon monoxide becomes weaker, then the frequency becomes lower. That’s exactly what we saw - when we had defects in the magnesium oxide, we had larger shifts than when we had magnesium oxide without defects."

Lead author of the paper and senior research scientist in Landman’s group Bokwon Yoon commented, "The agreement between the predicted and the measured values of the vibrational frequency shifts is very gratifying, confirming the charging and bonding mechanisms."

"And all this happens at low temperatures," said Heiz. Typically, reactions requiring catalysts need heat or pressure to get the reaction going, and that adds to the cost of manufacturing, but that isn’t the case here. Since the properties of the catalytic beds can increase the rate of reactions for nanocatalysts, new and better low-temperature catalysts may be found.

"We knew the specific number of atoms in the catalyst and that defects in the catalytic beds are important. Now we know why those defects are so essential - because they allow the catalyst to be electrically charged. We hope these guidelines will lead to more research in search of nano-sized catalysts. It’s possible that at the nanoscale you may find catalysts that can do things under more gentle and cheaper conditions," said Landman.

David Terraso | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>