Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aging in irradiated materials: First predictive model of the microstructure of irradiated iron

19.01.2005


Researchers from the CEA’s Nuclear Energy Division have, for the first time, been able to make a quantitative prediction of the evolution of radiation-induced defects in a structural material. The results obtained for iron, using multi-scale simulation techniques based on the atomic scale, will help provide greater insight into material aging phenomena in existing nuclear power plants and may be applied to nuclear systems of the future. They are to be published in the "Nature Materials" journal on January 4, 2005.



The evolution kinetics of radiation-induced defects in a material has a direct impact on changes in its microstructure and consequently on its mechanical properties. This makes the quantitative prediction of this kinetics and the phenomena governing it a major challenge for the nuclear industry.

This challenge can now be taken up by intercoupling computer simulation techniques operating on different scales. This is what is meant by multi-scale simulation; the numerical results obtained on one time and space scale were taken and used as input data for modeling on the next higher scale:


- first of all, ab initio computer simulations rooted in quantum mechanics described the structure and migration of defects and defect clusters. These simulations, which call for considerable computing resources, were performed by drawing intensively on the capabilities of the CCRT (research and technology computing center) set up on the CEA’s Bruyères-le-Châtel site.

- the second stage consisted in taking these elementary properties and reconstructing, on the basis of a kinetic model , the evolution of defects and their effects on the macroscopic properties of an irradiated iron sample one micron (a thousandth of a millimeter) in size, over a period of about one hour.

The simulations were compared with indirect experimental measurements . The excellent agreement obtained demonstrates the realism of this multi-scale model, which highlights the role played by the hitherto unsuspected migration of small interstitial and vacancy clusters. They challenge the interpretation of several earlier experiments and simulations and open the way for the quantitative simulation of more complex irradiated materials such as industrial steels. They will be used in interpreting the mechanical behavior of the ferritic steels used as structural materials in existing nuclear fission plants, as well as those proposed for future fusion plants.

Anne-Gabrielle Dauba-Pantanacce | alfa
Further information:
http://www.cea.fr

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>