Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers: ’Bullet star’ shines 350 times brighter than the sun

19.01.2005


For decades, scientists have observed that Regulus, the brightest star in the constellation Leo, spins much faster than the sun. But thanks to a powerful new telescopic array, astronomers now know with unprecedented clarity what that means to this massive celestial body.


Regulus and the sun are shown as they would appear side by side. The diameter of Regulus at its equator is 4.2 times that of the sun. The dashed line identifies the spin axis of the star, and the 86 degree tilt of the pole from the north is indicated. The phenomenon of “gravity darkening” is responsible for Regulus being brighter at its poles than around its equator. The picture of Regulus is based upon measurements obtained with the CHARA array, which does not by itself produce a true image of the star.



A group of astronomers, led by Hal McAlister, director of Georgia State University’s Center for High Angular Resolution Astronomy, have used the center’s array of telescopes to detect for the first time Regulus’ rotationally induced distortions. Scientists have measured the size and shape of the star, the temperature difference between its polar and equatorial regions, and the orientation of its spin axis. The researchers’ observations of Regulus represent the first scientific output from the CHARA array, which became routinely operational in early 2004.

Most stars rotate sedately about their spin axes, McAlister says. The sun, for example, completes a full rotation in about 24 days, which means its equatorial spin speed is roughly 4,500 miles per hour. Regulus’ equatorial spin speed is nearly 700,000 miles per hour and its diameter is about five times greater than the sun’s. Regulus also bulges conspicuously at its equator, a stellar rarity.


Regulus’ centrifugal force causes it to expand so that its equatorial diameter is one-third larger than its polar diameter. In fact, if Regulus were rotating about 10 percent faster, its outward centrifugal force would exceed the inward pull of gravity and the star would fly apart, says McAlister, CHARA’s director and Regents Professor of Astronomy at Georgia State.

Because of its distorted shape, Regulus, a single star, exhibits what is known as "gravity darkening" – the star becomes brighter at its poles than at its equator -- a phenomenon previously only detected in binary stars. According to McAlister, the darkening occurs because Regulus is colder at its equator than at its poles. Regulus’ equatorial bulge diminishes the pull of gravity at the equator, which causes the temperature there to decrease. CHARA researchers have found that the temperature at Regulus’ poles is 15,100 degrees Celsius, while the equator’s temperature is only 10,000 Celsius. The temperature variation causes the star to be about five times brighter at its poles than at its equator. Regulus’ surface is so hot that the star is actually nearly 350 times more luminous than the sun.

CHARA researchers discovered another oddity when they determined the orientation of the star’s spin axis, says McAlister. "We’re looking at the star essentially equator-on, and the spin axis is tilted about 86 degrees from the north direction in the sky," he says. "But, curiously enough, the star is moving through space in the same direction its pole is pointing. Regulus is moving like an enormous spinning bullet through space. We have no idea why this is the case."

Astronomers viewed Regulus using CHARA’s telescopes for six weeks last spring to obtain interferometric data that, combined with spectroscopic measurements and theoretical models, created a picture of the star that reveals the effects of its incredibly fast spin. The results will be published this spring in The Astrophysical Journal.

The CHARA array, located atop Mt. Wilson in southern California, is among a handful of new "super" instruments composed of multiple telescopes optically linked to function as a single telescope of enormous size. The array consists of six telescopes, each containing a light-collecting mirror one meter in diameter. The telescopes are arranged in the shape of a "Y," with the outermost telescopes located about 200 meters from the center of the array.

A precise combination of the light from the individual telescopes allows the CHARA array to behave as if it were a single telescope with a mirror 330 meters across. The array can’t show very faint objects detected by telescopes such as the giant 10-meter Keck telescopes in Hawaii, but scientists can see details in brighter objects nearly 100 times sharper than those obtainable using the Keck array. Working at infrared wavelengths, the CHARA array can see details as small as 0.0005 arcseconds. (One arcsecond is 1/3,600 of a degree, equivalent to the angular size of a dime seen from a distance of 2.3 miles.) In addition to Georgia State researchers, the CHARA team includes collaborators from the National Optical Astronomy Observatories in Tucson, Ariz., and NASA’s Michelson Science Center at the California Institute of Technology in Pasadena.

The CHARA array was constructed with funding from the National Science Foundation, Georgia State, the W. M. Keck Foundation, and the David and Lucile Packard Foundation. The NSF also has awarded funds for ongoing research at the CHARA array.

Hal McAlister | EurekAlert!
Further information:
http://www.chara.gsu.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>