Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomy’s case of the missing disks

18.01.2005


Astronomers announced Jan. 10 that they have a lead in the case of the missing disks. The report was presented by UCLA graduate student and Ph.D. candidate Peter Plavchan; his adviser, Michael Jura; and Sarah Lipscy, now at Ball Aerospace, to the American Astronomical Society meeting in San Diego. This lead may account for the missing evidence of red dwarfs forming planetary systems.



The evidence

Red dwarfs (or M Dwarfs) are stars like our Sun in many respects but smaller, less massive and fainter. Approximately 70 percent of all the stars in our galaxy are red dwarfs. "We would like to understand whether these stars form planets, as the other stars in our galaxy do," said Plavchan, who leads this research investigation.


Approximately half of all newborn stars are known to possess the materials to make planets. When stars are born, the leftover materials form what astronomers refer to as a primordial disk surrounding the star. From this primordial disk, composed of gas and small grains of solid material astronomers call "dust," planets can start to grow. As these "planetesimals" grow by accreting nearby material in the primordial disk, they also collide with one another. These collisions are frequent and violent, producing more dust forming a new disk of debris after the star is about 5–10 million years old. In our own solar system, we see evidence everywhere of these violent collisions that took place more than 4 billion years ago -- such as the craters on the moon.

The debris disk of "dust" left over from these ancient collisions in our own solar system has long since dissipated. Astronomers, however, have discovered many young stars in the local part of our galaxy where these debris disks still can be seen. These stars are caught in the act of forming planets and are of great interest to astronomers who want to understand how this process works. Curiously though, only two of these stars with debris disks were found to be red dwarfs: AU Microscopium (AU Mic) and GJ 182, located 32.4 light-years and approximately 85 light?years from Earth, respectively.

Despite red dwarfs holding a solid majority among the different kinds of stars in our galaxy, only two have been found with evidence of debris disks. If half of all red dwarfs started with the material to form planets, what happened to the rest of them? Where did the material and dust surrounding these stars go? Factors such as the ages, smaller sizes and faintness of red dwarfs do not fully account for these missing disks.

The investigation

In December 2002 and April 2003, Plavchan, Jura and Lipscy observed a sample of nine nearby red dwarfs with the Long Wavelength Spectrometer, an infrared camera on the 10-meter telescope at the Keck Observatory on Mauna Kea, Hawaii. These nine stars all are located within 100 light-years of Earth and were thought potentially to possess debris disks. None, however, showed any evidence for the presence of warm dust produced by the collisions of forming planets.

Backed by the previous research investigations that also came up empty-handed, the researchers considered what makes red dwarfs different from other bigger, brighter stars that have been found with debris disks. "We have to consider how the dust in these young red dwarfs gets removed and where it goes," said Jura, Plavchan’s thesis adviser.

In other young, more massive stars -- A-, F- and G-types -- the dust primarily is removed by Poynting-Robertson drag, radiative blowout and collisions. "These first two processes are simply ineffective for red dwarfs, so something else must be going on to explain the disappearance of the debris disks," Plavchan said.

Under Poynting Robertson drag, a consequence of special relativity, the dust slowly spirals in towards the star until it heats up and sublimates.

The new lead in the case

Plavchan, Jura and Lipscy have discovered that there is another process similar to Poynting-Robertson drag that potentially can solve the case of the missing red dwarf debris disks: stellar wind drag.

Stars like our Sun and red dwarfs possess a stellar wind -- protons and other particles that are driven by the magnetic fields in the outer layers of a star to speeds in excess of a few hundred miles per second and expelled out into space. In our own solar system, the solar wind is responsible for shaping comets’ tails and producing the Aurorae Borealis on Earth.

This stellar wind also can produce a drag on dust grains surrounding a star. Astronomers have long known about this drag force, but it is less important than Poynting-Robertson drag for our own Sun. Red dwarfs, however, experience stronger magnetic storms and consequently have stronger stellar winds. Furthermore, X-ray data show that the red dwarf winds are even stronger when the stars are very young and planets are forming.

"Stellar wind drag can ’erase’ the evidence of forming planets around red dwarfs by removing the dust that is produced in the collisions that are taking place. Without stellar wind drag, the debris disk would still be there and we would be able to see it with current technology," Plavchan said.

This research potentially solves the case of the missing disks, but more work is needed. Astronomers know little about the strength of stellar winds around young stars and red dwarfs. While further observations of red dwarfs by the Spitzer Infrared Telescope Facility have supported this research, this case will not be closed until we can directly measure the strength of stellar winds around young red dwarfs.

Stuart Wolpert | EurekAlert!
Further information:
http://www.college.ucla.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>