Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper vs. copper at the relativistic heavy ion collider

17.01.2005


Middleweight matchup to provide control data in exploration of new form of matter



Scientists searching for evidence that a particle accelerator at the U.S. Department of Energy’s Brookhaven National Laboratory has created a new form of matter not seen since the Big Bang and eager to study its properties have begun using a new experimental probe, collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density -- not as high as in earlier runs colliding two beams of gold ions at the Relativistic Heavy Ion Collider (RHIC), but more than was produced by colliding a beam of gold ions with much lighter deuterons.

"To completely understand the phenomena we are observing at RHIC, we have to look at what happens over a range of system sizes and collision energies," says Samuel Aronson, chair of Brookhaven’s Physics Department and an experimenter at RHIC.


RHIC scientists agree that the gold-gold collisions have produced some very intriguing data that indicate the presence of a new form of matter -- hotter and denser than anything ever produced in a laboratory. Furthermore, data from the deuteron-gold collisions confirm that the hot, dense matter the scientists are seeing in the gold-gold collisions is made in the collisions; that is, it is not an intrinsic property of the gold ions themselves, because it is not observed in the deuteron-gold collisions.

"The copper experiments will provide another control, or basis for comparison, that will help us understand how the new phenomena we are observing can be turned on and off, and under what conditions," Aronson says.

The run is expected to last for about 10 weeks, but depends on funding for fiscal year 2005.

At the same time, RHIC scientists are still analyzing more than a million gigabytes of data gathered since RHIC started collisions in June 2000, much of it from the most recent gold-gold run conducted in 2004. This data should help scientists describe in more detail the properties of the new form of matter being observed in the gold-gold collisions, and perhaps settle on how best to characterize it.

Built upon the foundation of an existing chain of accelerators at Brookhaven Lab, RHIC is actually two circular accelerators, 2.4 miles in circumference, capable of accelerating heavy ions to nearly the speed of light and creating collisions between these particles to help investigate the fundamental nature of matter. Through its collisions of gold ions, RHIC was designed to reproduce the hot, dense conditions of the early universe, in which it is postulated that the inner components of protons and neutrons -- known as quarks -- and the gluons that bind the quarks in ordinary matter would exist for a fleeting instant free from their normal confinement within protons and neutrons.

That is, the energy of the collisions was predicted to be sufficient to "melt" the protons and neutrons and produce a hot "soup" of free quarks and gluons, dubbed the quark-gluon plasma. By analyzing what happens in these collisions using four sophisticated detectors (BRAHMS, PHENIX, PHOBOS, and STAR), 1000 researchers from around the world are exploring the smallest, most fundamental bits of matter and how they interact.

To date, some of what has been observed at RHIC fits with what was expected of quark-gluon plasma, but some of the findings do not. So there has been considerable debate over whether the hot, dense matter being created at RHIC is indeed the postulated quark-gluon plasma, or perhaps something even more interesting.

Data already in hand show that the quarks in the new form of matter appear to interact quite strongly with one another and the surrounding gluons, rather than floating freely in the "soup" as the theory of quark-gluon plasma had predicted. Many physicists are beginning to use the term "strongly interacting quark-gluon plasma," or sQGP, to capture this understanding.

"The findings from the copper-copper run will provide some new answers -- and perhaps some additional questions, as we move steadily from discovery to the full characterization of the new form of nuclear matter," says Thomas Kirk, Brookhaven’s Associate Laboratory Director for High-Energy and Nuclear Physics.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/newsroom

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>