Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper vs. copper at the relativistic heavy ion collider

17.01.2005


Middleweight matchup to provide control data in exploration of new form of matter



Scientists searching for evidence that a particle accelerator at the U.S. Department of Energy’s Brookhaven National Laboratory has created a new form of matter not seen since the Big Bang and eager to study its properties have begun using a new experimental probe, collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density -- not as high as in earlier runs colliding two beams of gold ions at the Relativistic Heavy Ion Collider (RHIC), but more than was produced by colliding a beam of gold ions with much lighter deuterons.

"To completely understand the phenomena we are observing at RHIC, we have to look at what happens over a range of system sizes and collision energies," says Samuel Aronson, chair of Brookhaven’s Physics Department and an experimenter at RHIC.


RHIC scientists agree that the gold-gold collisions have produced some very intriguing data that indicate the presence of a new form of matter -- hotter and denser than anything ever produced in a laboratory. Furthermore, data from the deuteron-gold collisions confirm that the hot, dense matter the scientists are seeing in the gold-gold collisions is made in the collisions; that is, it is not an intrinsic property of the gold ions themselves, because it is not observed in the deuteron-gold collisions.

"The copper experiments will provide another control, or basis for comparison, that will help us understand how the new phenomena we are observing can be turned on and off, and under what conditions," Aronson says.

The run is expected to last for about 10 weeks, but depends on funding for fiscal year 2005.

At the same time, RHIC scientists are still analyzing more than a million gigabytes of data gathered since RHIC started collisions in June 2000, much of it from the most recent gold-gold run conducted in 2004. This data should help scientists describe in more detail the properties of the new form of matter being observed in the gold-gold collisions, and perhaps settle on how best to characterize it.

Built upon the foundation of an existing chain of accelerators at Brookhaven Lab, RHIC is actually two circular accelerators, 2.4 miles in circumference, capable of accelerating heavy ions to nearly the speed of light and creating collisions between these particles to help investigate the fundamental nature of matter. Through its collisions of gold ions, RHIC was designed to reproduce the hot, dense conditions of the early universe, in which it is postulated that the inner components of protons and neutrons -- known as quarks -- and the gluons that bind the quarks in ordinary matter would exist for a fleeting instant free from their normal confinement within protons and neutrons.

That is, the energy of the collisions was predicted to be sufficient to "melt" the protons and neutrons and produce a hot "soup" of free quarks and gluons, dubbed the quark-gluon plasma. By analyzing what happens in these collisions using four sophisticated detectors (BRAHMS, PHENIX, PHOBOS, and STAR), 1000 researchers from around the world are exploring the smallest, most fundamental bits of matter and how they interact.

To date, some of what has been observed at RHIC fits with what was expected of quark-gluon plasma, but some of the findings do not. So there has been considerable debate over whether the hot, dense matter being created at RHIC is indeed the postulated quark-gluon plasma, or perhaps something even more interesting.

Data already in hand show that the quarks in the new form of matter appear to interact quite strongly with one another and the surrounding gluons, rather than floating freely in the "soup" as the theory of quark-gluon plasma had predicted. Many physicists are beginning to use the term "strongly interacting quark-gluon plasma," or sQGP, to capture this understanding.

"The findings from the copper-copper run will provide some new answers -- and perhaps some additional questions, as we move steadily from discovery to the full characterization of the new form of nuclear matter," says Thomas Kirk, Brookhaven’s Associate Laboratory Director for High-Energy and Nuclear Physics.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/newsroom

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>