Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper vs. copper at the relativistic heavy ion collider

17.01.2005


Middleweight matchup to provide control data in exploration of new form of matter



Scientists searching for evidence that a particle accelerator at the U.S. Department of Energy’s Brookhaven National Laboratory has created a new form of matter not seen since the Big Bang and eager to study its properties have begun using a new experimental probe, collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density -- not as high as in earlier runs colliding two beams of gold ions at the Relativistic Heavy Ion Collider (RHIC), but more than was produced by colliding a beam of gold ions with much lighter deuterons.

"To completely understand the phenomena we are observing at RHIC, we have to look at what happens over a range of system sizes and collision energies," says Samuel Aronson, chair of Brookhaven’s Physics Department and an experimenter at RHIC.


RHIC scientists agree that the gold-gold collisions have produced some very intriguing data that indicate the presence of a new form of matter -- hotter and denser than anything ever produced in a laboratory. Furthermore, data from the deuteron-gold collisions confirm that the hot, dense matter the scientists are seeing in the gold-gold collisions is made in the collisions; that is, it is not an intrinsic property of the gold ions themselves, because it is not observed in the deuteron-gold collisions.

"The copper experiments will provide another control, or basis for comparison, that will help us understand how the new phenomena we are observing can be turned on and off, and under what conditions," Aronson says.

The run is expected to last for about 10 weeks, but depends on funding for fiscal year 2005.

At the same time, RHIC scientists are still analyzing more than a million gigabytes of data gathered since RHIC started collisions in June 2000, much of it from the most recent gold-gold run conducted in 2004. This data should help scientists describe in more detail the properties of the new form of matter being observed in the gold-gold collisions, and perhaps settle on how best to characterize it.

Built upon the foundation of an existing chain of accelerators at Brookhaven Lab, RHIC is actually two circular accelerators, 2.4 miles in circumference, capable of accelerating heavy ions to nearly the speed of light and creating collisions between these particles to help investigate the fundamental nature of matter. Through its collisions of gold ions, RHIC was designed to reproduce the hot, dense conditions of the early universe, in which it is postulated that the inner components of protons and neutrons -- known as quarks -- and the gluons that bind the quarks in ordinary matter would exist for a fleeting instant free from their normal confinement within protons and neutrons.

That is, the energy of the collisions was predicted to be sufficient to "melt" the protons and neutrons and produce a hot "soup" of free quarks and gluons, dubbed the quark-gluon plasma. By analyzing what happens in these collisions using four sophisticated detectors (BRAHMS, PHENIX, PHOBOS, and STAR), 1000 researchers from around the world are exploring the smallest, most fundamental bits of matter and how they interact.

To date, some of what has been observed at RHIC fits with what was expected of quark-gluon plasma, but some of the findings do not. So there has been considerable debate over whether the hot, dense matter being created at RHIC is indeed the postulated quark-gluon plasma, or perhaps something even more interesting.

Data already in hand show that the quarks in the new form of matter appear to interact quite strongly with one another and the surrounding gluons, rather than floating freely in the "soup" as the theory of quark-gluon plasma had predicted. Many physicists are beginning to use the term "strongly interacting quark-gluon plasma," or sQGP, to capture this understanding.

"The findings from the copper-copper run will provide some new answers -- and perhaps some additional questions, as we move steadily from discovery to the full characterization of the new form of nuclear matter," says Thomas Kirk, Brookhaven’s Associate Laboratory Director for High-Energy and Nuclear Physics.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/newsroom

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>