Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe reaches new frontier - Huygens lands on Titan

17.01.2005


14 January 2005, after its seven-year journey through the Solar System on board the Cassini spacecraft, ESA’s Huygens probe has successfully descended through the atmosphere of Titan, Saturn’s largest moon, and safely landed on its surface.


Artist’s impression of Huygens touchdown



The first scientific data arrived at the European Space Operations Centre (ESOC) in Darmstadt, Germany, this afternoon at 17:19 CET. Huygens is mankind’s first successful attempt to land a probe on another world in the outer Solar System. “This is a great achievement for Europe and its US partners in this ambitious international endeavour to explore the Saturnian system,” said Jean-Jacques Dordain, ESA’s Director General.

Following its release from the Cassini mothership on 25 December, Huygens reached Titan’s outer atmosphere after 20 days and a 4 million km cruise. The probe started its descent through Titan’s hazy cloud layers from an altitude of about 1270 km at 11:13 CET. During the following three minutes Huygens had to decelerate from 18 000 to 1400 km per hour.


A sequence of parachutes then slowed it down to less than 300 km per hour. At a height of about 160 km the probe’s scientific instruments were exposed to Titan’s atmosphere. At about 120 km, the main parachute was replaced by a smaller one to complete the descent, with an expected touchdown at 13:34 CET. Preliminary data indicate that the probe landed safely, likely on a solid surface.

The probe began transmitting data to Cassini four minutes into its descent and continued to transmit data after landing at least as long as Cassini was above Titan’s horizon. The certainty that Huygens was alive came already at 11:25 CET today, when the Green Bank radio telescope in West Virginia, USA, picked up a faint but unmistakable radio signal from the probe. Radio telescopes on Earth continued to receive this signal well past the expected lifetime of Huygens.

Huygens data, relayed by Cassini, were picked up by NASA’s Deep Space Network and delivered immediately to ESA’s European Space Operation Centre in Darmstadt, Germany, where the scientific analysis is currently taking place.

“Titan was always the target in the Saturn system where the need for ‘ground truth’ from a probe was critical. It is a fascinating world and we are now eagerly awaiting the scientific results,” says Professor David Southwood, Director of ESA’s scientific programmme.

“The Huygens scientists are all delighted. This was worth the long wait,” says Dr Jean-Pierre Lebreton, ESA Huygens Mission Manager. Huygens is expected to provide the first direct and detailed sampling of Titan’s atmospheric chemistry and the first photographs of its hidden surface, and will supply a detailed ‘weather report’.

One of the main reasons for sending Huygens to Titan is that its nitrogen atmosphere, rich in methane, and its surface may contain many chemicals of the kind that existed on the young Earth. Combined with the Cassini observations, Huygens will afford an unprecedented view of Saturn’s mysterious moon.

“Descending through Titan was a once-in-a-lifetime opportunity and today’s achievement proves that our partnership with ESA was an excellent one,” says Alphonso Diaz, NASA Associate Administrator of Science.

The Cassini-Huygens mission is a cooperation between NASA, the European Space Agency and ASI, the Italian space agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASA’s Office of Space Science, Washington. JPL designed, developed and assembled the Cassini orbiter.

“The teamwork in Europe and the USA, between scientists, industry and agencies has been extraordinary and has set the foundation for today’s enormous success,” concludes Jean-Jacques Dordain.

Franco Bonacina | EurekAlert!
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>