Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spying on Black-Hole Eating Habits with LISA

14.01.2005


As big fish eat little fish in the Earth’s vast oceans, so too do supermassive black holes gorge on smaller black holes and neutron stars, making themselves more massive in the process. Using sophisticated computer modeling, Penn State scientists have calculated the rate of this black-hole snacking, called "extreme-mass-ratio inspirals." They expect to see several events per year with the Laser Interferometer Space Antennae (LISA), a joint NASA - European Space Agency mission now in development.



Steinn Sigurdsson, associate professor of astronomy and astrophysics at Penn State, discusses the inspiral rate today during a presentation at the American Astronomical Society meeting in San Diego. These events will be a major source of gravitational waves, which are ripples in spacetime. Sigurdsson said that this type of black hole inspiral provides one of the cleanest tests for assessing Einstein’s theory of general relativity.

"Most galaxies contain a supermassive black hole, and from time to time a smaller black hole or neutron star will fall in," said Sigurdsson. "Very little light, if any, is emitted. This is done in the dark. Our best chance of studying the process is through gravitational radiation."


Predicted by Einstein, gravitational radiation has not yet been detected directly. These waves travel at light speed. Yet, unlike light waves, the subtle gravitational waves hardly interact with matter. A passing wave causes all matter to bob, like buoys on the ocean. LISA works by setting out three spacecraft -- buoys in spacetime -- and measuring the change in their separation as they bob in response to passing gravitational waves. The three LISA spacecraft will be separated from each other by over 3 million miles, while the gravitational waves alter the distance between them by far less than the width of an atom.

These waves, Sigurdsson said, grow more intense in the weeks just before the larger black hole consumes the smaller object. That is when LISA could detect an imminent merger. Higher-mass objects falling into the black hole might produce detectable waves years in advance of the merger. Sigurdsson puts the inspiral rate at about 1 per million years per galaxy. Because there are millions of galaxies in the visible universe, LISA might detect several inspirals each year.

Extreme-mass-ratio inspirals involve what scientists call compact objects -- stellar-size black holes, neutron stars, or white dwarfs. Supermassive black holes also can swallow stars like our Sun. But these stars get ripped apart first, and they do not produce detectable gravitational waves.

Compact objects are dense. Neutron stars, for example, contain the densest material found in nature. As a result, they act like trace particles falling into a black hole, a perfect physics experiment. This is a clean merger without splintering. So, the mergers serve as very precise tests for Einstein’s theory of general relativity. Any discrepancy between observation and theory would point to a flaw in general relativity.

LISA’s lasers will measure tiny changes caused by passing waves in the motion of freely falling test masses in each spacecraft at a sub-nanometer accuracy. Technology to detect such subtle changes is now in development at several institutes, including Penn State. An ESA-led "LISA-Pathfinder" mission is expected to launch in 2008 to test formation flying and other technologies. LISA will launch a few years after this.

"The study of gravitational radiation is the newest frontier in astronomy," said Lee Samuel Finn, professor of astronomy and astrophysics and director of Penn State’s Center for Gravitational Wave Physics. "Scientists and engineers around the world are working together to make LISA a reality. Steinn’s work, one important piece among many, builds upon theories and models developed in recent years at Penn State and other institutes."

LISA will detect low-frequency waves, in the millihertz range. LIGO, the Laser Interferometer Gravitational Wave Observatory, will detect higher-frequency, kilohertz waves. The ground-based LIGO is funded by the National Science Foundation. Observations are being conducted at the two LIGO facilities, in Livingston, Louisiana, and Hanford, Washington.

LISA is a joint venture between NASA, the European Space Agency, and European national space agencies. In addition to leading the LISA Pathfinder mission, Europe will contribute much of the scientific instrumentation and the interplanetary propulsion systems to LISA. NASA’s Goddard Space Flight Center will manage the mission for NASA and will provide the spacecraft and final integration. NASA’s Jet Propulsion Laboratory will supply NASA’s test package on LISA Pathfinder and the scientific instrumentation and operations support for the main LISA mission.

Barbara K. Kennedy | EurekAlert!
Further information:
http://lisa.nasa.gov/.
http://www.psu.edu
http://www.science.psu.edu/alert/Sigurdsson1-2005.htm

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>