Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spying on Black-Hole Eating Habits with LISA

14.01.2005


As big fish eat little fish in the Earth’s vast oceans, so too do supermassive black holes gorge on smaller black holes and neutron stars, making themselves more massive in the process. Using sophisticated computer modeling, Penn State scientists have calculated the rate of this black-hole snacking, called "extreme-mass-ratio inspirals." They expect to see several events per year with the Laser Interferometer Space Antennae (LISA), a joint NASA - European Space Agency mission now in development.



Steinn Sigurdsson, associate professor of astronomy and astrophysics at Penn State, discusses the inspiral rate today during a presentation at the American Astronomical Society meeting in San Diego. These events will be a major source of gravitational waves, which are ripples in spacetime. Sigurdsson said that this type of black hole inspiral provides one of the cleanest tests for assessing Einstein’s theory of general relativity.

"Most galaxies contain a supermassive black hole, and from time to time a smaller black hole or neutron star will fall in," said Sigurdsson. "Very little light, if any, is emitted. This is done in the dark. Our best chance of studying the process is through gravitational radiation."


Predicted by Einstein, gravitational radiation has not yet been detected directly. These waves travel at light speed. Yet, unlike light waves, the subtle gravitational waves hardly interact with matter. A passing wave causes all matter to bob, like buoys on the ocean. LISA works by setting out three spacecraft -- buoys in spacetime -- and measuring the change in their separation as they bob in response to passing gravitational waves. The three LISA spacecraft will be separated from each other by over 3 million miles, while the gravitational waves alter the distance between them by far less than the width of an atom.

These waves, Sigurdsson said, grow more intense in the weeks just before the larger black hole consumes the smaller object. That is when LISA could detect an imminent merger. Higher-mass objects falling into the black hole might produce detectable waves years in advance of the merger. Sigurdsson puts the inspiral rate at about 1 per million years per galaxy. Because there are millions of galaxies in the visible universe, LISA might detect several inspirals each year.

Extreme-mass-ratio inspirals involve what scientists call compact objects -- stellar-size black holes, neutron stars, or white dwarfs. Supermassive black holes also can swallow stars like our Sun. But these stars get ripped apart first, and they do not produce detectable gravitational waves.

Compact objects are dense. Neutron stars, for example, contain the densest material found in nature. As a result, they act like trace particles falling into a black hole, a perfect physics experiment. This is a clean merger without splintering. So, the mergers serve as very precise tests for Einstein’s theory of general relativity. Any discrepancy between observation and theory would point to a flaw in general relativity.

LISA’s lasers will measure tiny changes caused by passing waves in the motion of freely falling test masses in each spacecraft at a sub-nanometer accuracy. Technology to detect such subtle changes is now in development at several institutes, including Penn State. An ESA-led "LISA-Pathfinder" mission is expected to launch in 2008 to test formation flying and other technologies. LISA will launch a few years after this.

"The study of gravitational radiation is the newest frontier in astronomy," said Lee Samuel Finn, professor of astronomy and astrophysics and director of Penn State’s Center for Gravitational Wave Physics. "Scientists and engineers around the world are working together to make LISA a reality. Steinn’s work, one important piece among many, builds upon theories and models developed in recent years at Penn State and other institutes."

LISA will detect low-frequency waves, in the millihertz range. LIGO, the Laser Interferometer Gravitational Wave Observatory, will detect higher-frequency, kilohertz waves. The ground-based LIGO is funded by the National Science Foundation. Observations are being conducted at the two LIGO facilities, in Livingston, Louisiana, and Hanford, Washington.

LISA is a joint venture between NASA, the European Space Agency, and European national space agencies. In addition to leading the LISA Pathfinder mission, Europe will contribute much of the scientific instrumentation and the interplanetary propulsion systems to LISA. NASA’s Goddard Space Flight Center will manage the mission for NASA and will provide the spacecraft and final integration. NASA’s Jet Propulsion Laboratory will supply NASA’s test package on LISA Pathfinder and the scientific instrumentation and operations support for the main LISA mission.

Barbara K. Kennedy | EurekAlert!
Further information:
http://lisa.nasa.gov/.
http://www.psu.edu
http://www.science.psu.edu/alert/Sigurdsson1-2005.htm

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>