Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Search in Stellar Graveyard Yields Two Possible Planets

14.01.2005


Astronomers are announcing today the first results of a search for extrasolar planets and brown dwarfs in an unlikely place--the stellar graveyard. The report, titled "Searching for Extrasolar Planets in the Stellar Graveyard," is being presented at the American Astronomical Society meeting in San Diego, California, by John Debes, a graduate student at Penn State; Steinn Sigurdsson, associate professor of astronomy and astrophysics at Penn State University; Bruce Woodgate, of the NASA Goddard Space Flight Center, and their collaborators. These results are particularly interesting because they answer some questions about the presence of planets around stars that are more massive than the Sun.


Shown here is one of the 20 target white dwarfs of our survey. The white dwarf is at the center of the image and has been masked out. North is up and east is to the left. Nearby to the east is a candidate companion (circled), which if associated would be a massive planet or low mass brown dwarf. It needs further observations to confirm or refute its association with the white dwarf.



The research team found two candidate planets in its survey of 20 dead stars--white dwarfs at distances between 24 and 220 lightyears--with three telescopes: the Near-Infrared Camera and Multi-Object Spectrograph on the Hubble Space Telescope, the Canada France Hawaii 3.6-meter (150-inch) Telescope, and the Gemini North 8-meter (300-inch) Telescope. White dwarfs are small, dense, Earth-sized objects that are the leftover corpse of a star that has run out of enough fuel to shine brightly but was once as massive as--or several times more massive than--the Sun. The researchers had calculated that they should be able to detect planets with a mass 10 times that of Jupiter if any were present around most of the white dwarfs, and as small as five times the mass of Jupiter around a few of them, but they detected only two promising candidate planets among the 20 white dwarfs they studied. "You have to be careful with a candidate planet because it often is just a background object," says Sigurdsson. "Since all of our candidates are incredibly faint, we cannot obtain spectra for them to identify whether they are a planet, a brown dwarf, or a background galaxy."

To determine whether the candidates are planets, the Sigurdsson team now plans to take two snapshots of each over a period of several months to a year. "Each target white dwarf moves across the sky about 1/3000 of the diameter of the full moon every year, whereas background objects do not appear to move at all," Debes explains, "so if a candidate moves with the white dwarf that would show that the two are physically associated and the candidate is a planet in orbit around the white dwarf."


The team earlier had detected three candidate planets that they found to be background objects after taking a second image. "If the two remaining candidates also are background objects, that discovery would indicate the frequency of planets around white dwarfs is quite small, though a larger sample of white dwarfs must be studied to more accurately gauge their frequency," Sigurdsson explains.

Because it is nearly impossible with current telescopes to see a planet around a nearby star as bright as the Sun, Sigurdsson’s team searched around near-by white dwarfs, whose dim glow is much less likely to obscure a companion planet. A white dwarf is up to thousands of times dimmer than the Sun and the contrast between it and a planet several times Jupiter’s mass is about a factor of ten thousand less. "If we could find such a planet, then we can use the evidence it provides, like forensic investigators, to tell what the planetary system was like when the star was alive," Debes says.

The research is part of an intense race to take the first "photograph" of an extrasolar planet. Astronomers seek to compare the picture of an extrasolar planet with various theories about how such planets should look. This comparison will help reveal how the solar system formed and how frequent life may be in the Milky Way galaxy. Further discoveries are expected when larger and more sensitive telescopes are built that can better detect Jupiter-size planets.

This research was supported by the Penn State Astrobiology Research Center and the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #9834.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>