Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover carriers of astronomical 2175 extinction line in presolar grains

14.01.2005


Turn out the light!

A collaborative team of researchers has discovered what turns the lights out from space. Using sophisticated features on a transmission electron microscope, John P. Bradley, Ph.D., Director of the Institute for Geophysics and Planetary Physics at Lawrence Livermore National Laboratory, has discovered that organic carbon and amorphous silicates in interstellar grains embedded within interplanetary dust particles (IDPs) are the carriers of the astronomical 2175 Å extinction line.

Discovered by astronomers more than 40 years ago, the astronomical extinction line occurs at a wavelength of 2175 Angstroms, blocking light from stars from reaching the Earth due to the absorption of light by dust in the interstellar medium. One Angstrom (Å ) is one one-hundred millionth of a centimeter.



Bradley analyzed interstellar grains from the Laboratory for Space Sciences at Washington University in St. Louis to make the discovery.

Last year, Frank Stadermann, Ph.D., Washington University senior research scientist in physics, and Christine Floss, Ph.D., Washington University senior research scientist in earth and planetary sciences and physics, both in Arts & Sciences, reported that some grains within IDPs are presolar in origin. They used a unique instrument called the NanoSIMS – a type of secondary ion mass spectrometer – to measure the isotopic composition of the grains to determine these findings.

The NanoSIMS enables researchers to analyze particles at much higher spatial resolution than before, allowing them to find the small presolar grains within the dust particles. Until recently, ion microprobes could only analyze dozens of such sub-grains at one time and so were able to deduce only the average properties of a sample.

The findings were reported in the Jan. 14, 2005 issue of Science.

Collaborators on the discovery include researchers from the University of California at Davis, Lawrence Berkeley National Laboratory and NASA-Ames Research Center "Interstellar dust for some reason absorbs light at this frequency, and it has been difficult to pinpoint what the source of the absorption is," said Stadermann.

"The strange thing about this feature is that it was observed in different dust clouds and the peak width of the feature was variable, but the center of the peak was always exactly at 2175 Å. People tried to reproduce this in the laboratory on graphite, for example, and they couldn’t get exactly the right absorption peak. It was difficult to find the material responsible for this absorption. Now, for the first time, it can be said we have it."

Livermore’s Bradley used a state-of-the-art transmission electron microscope equipped with a monochromator and a high-resolution electron energy-loss spectrometer, allowing him to analyze in the 2175 Å range, to get exactly the same type of absorption feature in these dust particles.

"The interesting thing is that Bradley and his colleagues found the absorption feature in exactly those places in the IDPs that we have identified as presolar in origin," Stadermann said. "That is a good indication that what the astronomers have been seeing for the last 40 years is the same thing we now observe in these IDPs."

Floss said that Bradley’s discovery is significant because organic carbon and amorphous silicates are abundant in interstellar dust clouds and abundant carriers are needed to account for the fact that the 2175 Å feature is so commonly observed by astronomers. The Washington University contribution is important because the NanoSIMS measurements prove that these grains in the IDPs are actually presolar. This shows that this material has a direct connection to interstellar dust clouds and is not just something from the solar system that coincidentally shows the same extinction feature.

"We originally sent the IDPs to Bradley so that he could identify the presolar phases that we had found, "Floss said. "With this new technique he then made more measurements and made this discovery."

In 2000, with help from NASA and the National Science Foundation, Washington University bought the first commercially available NanoSIMS. Made by Cameca in Paris, the NanoSIMS ion microprobe can resolve particles as small as 100 nanometers in diameter. A million such particles side-by-side would make a centimeter. The presolar grains in IDPs range from 100 nanometers to 500 nanometers.

Christine Floss | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>