Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover carriers of astronomical 2175 extinction line in presolar grains


Turn out the light!

A collaborative team of researchers has discovered what turns the lights out from space. Using sophisticated features on a transmission electron microscope, John P. Bradley, Ph.D., Director of the Institute for Geophysics and Planetary Physics at Lawrence Livermore National Laboratory, has discovered that organic carbon and amorphous silicates in interstellar grains embedded within interplanetary dust particles (IDPs) are the carriers of the astronomical 2175 Å extinction line.

Discovered by astronomers more than 40 years ago, the astronomical extinction line occurs at a wavelength of 2175 Angstroms, blocking light from stars from reaching the Earth due to the absorption of light by dust in the interstellar medium. One Angstrom (Å ) is one one-hundred millionth of a centimeter.

Bradley analyzed interstellar grains from the Laboratory for Space Sciences at Washington University in St. Louis to make the discovery.

Last year, Frank Stadermann, Ph.D., Washington University senior research scientist in physics, and Christine Floss, Ph.D., Washington University senior research scientist in earth and planetary sciences and physics, both in Arts & Sciences, reported that some grains within IDPs are presolar in origin. They used a unique instrument called the NanoSIMS – a type of secondary ion mass spectrometer – to measure the isotopic composition of the grains to determine these findings.

The NanoSIMS enables researchers to analyze particles at much higher spatial resolution than before, allowing them to find the small presolar grains within the dust particles. Until recently, ion microprobes could only analyze dozens of such sub-grains at one time and so were able to deduce only the average properties of a sample.

The findings were reported in the Jan. 14, 2005 issue of Science.

Collaborators on the discovery include researchers from the University of California at Davis, Lawrence Berkeley National Laboratory and NASA-Ames Research Center "Interstellar dust for some reason absorbs light at this frequency, and it has been difficult to pinpoint what the source of the absorption is," said Stadermann.

"The strange thing about this feature is that it was observed in different dust clouds and the peak width of the feature was variable, but the center of the peak was always exactly at 2175 Å. People tried to reproduce this in the laboratory on graphite, for example, and they couldn’t get exactly the right absorption peak. It was difficult to find the material responsible for this absorption. Now, for the first time, it can be said we have it."

Livermore’s Bradley used a state-of-the-art transmission electron microscope equipped with a monochromator and a high-resolution electron energy-loss spectrometer, allowing him to analyze in the 2175 Å range, to get exactly the same type of absorption feature in these dust particles.

"The interesting thing is that Bradley and his colleagues found the absorption feature in exactly those places in the IDPs that we have identified as presolar in origin," Stadermann said. "That is a good indication that what the astronomers have been seeing for the last 40 years is the same thing we now observe in these IDPs."

Floss said that Bradley’s discovery is significant because organic carbon and amorphous silicates are abundant in interstellar dust clouds and abundant carriers are needed to account for the fact that the 2175 Å feature is so commonly observed by astronomers. The Washington University contribution is important because the NanoSIMS measurements prove that these grains in the IDPs are actually presolar. This shows that this material has a direct connection to interstellar dust clouds and is not just something from the solar system that coincidentally shows the same extinction feature.

"We originally sent the IDPs to Bradley so that he could identify the presolar phases that we had found, "Floss said. "With this new technique he then made more measurements and made this discovery."

In 2000, with help from NASA and the National Science Foundation, Washington University bought the first commercially available NanoSIMS. Made by Cameca in Paris, the NanoSIMS ion microprobe can resolve particles as small as 100 nanometers in diameter. A million such particles side-by-side would make a centimeter. The presolar grains in IDPs range from 100 nanometers to 500 nanometers.

Christine Floss | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>