Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover carriers of astronomical 2175 extinction line in presolar grains

14.01.2005


Turn out the light!

A collaborative team of researchers has discovered what turns the lights out from space. Using sophisticated features on a transmission electron microscope, John P. Bradley, Ph.D., Director of the Institute for Geophysics and Planetary Physics at Lawrence Livermore National Laboratory, has discovered that organic carbon and amorphous silicates in interstellar grains embedded within interplanetary dust particles (IDPs) are the carriers of the astronomical 2175 Å extinction line.

Discovered by astronomers more than 40 years ago, the astronomical extinction line occurs at a wavelength of 2175 Angstroms, blocking light from stars from reaching the Earth due to the absorption of light by dust in the interstellar medium. One Angstrom (Å ) is one one-hundred millionth of a centimeter.



Bradley analyzed interstellar grains from the Laboratory for Space Sciences at Washington University in St. Louis to make the discovery.

Last year, Frank Stadermann, Ph.D., Washington University senior research scientist in physics, and Christine Floss, Ph.D., Washington University senior research scientist in earth and planetary sciences and physics, both in Arts & Sciences, reported that some grains within IDPs are presolar in origin. They used a unique instrument called the NanoSIMS – a type of secondary ion mass spectrometer – to measure the isotopic composition of the grains to determine these findings.

The NanoSIMS enables researchers to analyze particles at much higher spatial resolution than before, allowing them to find the small presolar grains within the dust particles. Until recently, ion microprobes could only analyze dozens of such sub-grains at one time and so were able to deduce only the average properties of a sample.

The findings were reported in the Jan. 14, 2005 issue of Science.

Collaborators on the discovery include researchers from the University of California at Davis, Lawrence Berkeley National Laboratory and NASA-Ames Research Center "Interstellar dust for some reason absorbs light at this frequency, and it has been difficult to pinpoint what the source of the absorption is," said Stadermann.

"The strange thing about this feature is that it was observed in different dust clouds and the peak width of the feature was variable, but the center of the peak was always exactly at 2175 Å. People tried to reproduce this in the laboratory on graphite, for example, and they couldn’t get exactly the right absorption peak. It was difficult to find the material responsible for this absorption. Now, for the first time, it can be said we have it."

Livermore’s Bradley used a state-of-the-art transmission electron microscope equipped with a monochromator and a high-resolution electron energy-loss spectrometer, allowing him to analyze in the 2175 Å range, to get exactly the same type of absorption feature in these dust particles.

"The interesting thing is that Bradley and his colleagues found the absorption feature in exactly those places in the IDPs that we have identified as presolar in origin," Stadermann said. "That is a good indication that what the astronomers have been seeing for the last 40 years is the same thing we now observe in these IDPs."

Floss said that Bradley’s discovery is significant because organic carbon and amorphous silicates are abundant in interstellar dust clouds and abundant carriers are needed to account for the fact that the 2175 Å feature is so commonly observed by astronomers. The Washington University contribution is important because the NanoSIMS measurements prove that these grains in the IDPs are actually presolar. This shows that this material has a direct connection to interstellar dust clouds and is not just something from the solar system that coincidentally shows the same extinction feature.

"We originally sent the IDPs to Bradley so that he could identify the presolar phases that we had found, "Floss said. "With this new technique he then made more measurements and made this discovery."

In 2000, with help from NASA and the National Science Foundation, Washington University bought the first commercially available NanoSIMS. Made by Cameca in Paris, the NanoSIMS ion microprobe can resolve particles as small as 100 nanometers in diameter. A million such particles side-by-side would make a centimeter. The presolar grains in IDPs range from 100 nanometers to 500 nanometers.

Christine Floss | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>