Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover carriers of astronomical 2175 extinction line in presolar grains

14.01.2005


Turn out the light!

A collaborative team of researchers has discovered what turns the lights out from space. Using sophisticated features on a transmission electron microscope, John P. Bradley, Ph.D., Director of the Institute for Geophysics and Planetary Physics at Lawrence Livermore National Laboratory, has discovered that organic carbon and amorphous silicates in interstellar grains embedded within interplanetary dust particles (IDPs) are the carriers of the astronomical 2175 Å extinction line.

Discovered by astronomers more than 40 years ago, the astronomical extinction line occurs at a wavelength of 2175 Angstroms, blocking light from stars from reaching the Earth due to the absorption of light by dust in the interstellar medium. One Angstrom (Å ) is one one-hundred millionth of a centimeter.



Bradley analyzed interstellar grains from the Laboratory for Space Sciences at Washington University in St. Louis to make the discovery.

Last year, Frank Stadermann, Ph.D., Washington University senior research scientist in physics, and Christine Floss, Ph.D., Washington University senior research scientist in earth and planetary sciences and physics, both in Arts & Sciences, reported that some grains within IDPs are presolar in origin. They used a unique instrument called the NanoSIMS – a type of secondary ion mass spectrometer – to measure the isotopic composition of the grains to determine these findings.

The NanoSIMS enables researchers to analyze particles at much higher spatial resolution than before, allowing them to find the small presolar grains within the dust particles. Until recently, ion microprobes could only analyze dozens of such sub-grains at one time and so were able to deduce only the average properties of a sample.

The findings were reported in the Jan. 14, 2005 issue of Science.

Collaborators on the discovery include researchers from the University of California at Davis, Lawrence Berkeley National Laboratory and NASA-Ames Research Center "Interstellar dust for some reason absorbs light at this frequency, and it has been difficult to pinpoint what the source of the absorption is," said Stadermann.

"The strange thing about this feature is that it was observed in different dust clouds and the peak width of the feature was variable, but the center of the peak was always exactly at 2175 Å. People tried to reproduce this in the laboratory on graphite, for example, and they couldn’t get exactly the right absorption peak. It was difficult to find the material responsible for this absorption. Now, for the first time, it can be said we have it."

Livermore’s Bradley used a state-of-the-art transmission electron microscope equipped with a monochromator and a high-resolution electron energy-loss spectrometer, allowing him to analyze in the 2175 Å range, to get exactly the same type of absorption feature in these dust particles.

"The interesting thing is that Bradley and his colleagues found the absorption feature in exactly those places in the IDPs that we have identified as presolar in origin," Stadermann said. "That is a good indication that what the astronomers have been seeing for the last 40 years is the same thing we now observe in these IDPs."

Floss said that Bradley’s discovery is significant because organic carbon and amorphous silicates are abundant in interstellar dust clouds and abundant carriers are needed to account for the fact that the 2175 Å feature is so commonly observed by astronomers. The Washington University contribution is important because the NanoSIMS measurements prove that these grains in the IDPs are actually presolar. This shows that this material has a direct connection to interstellar dust clouds and is not just something from the solar system that coincidentally shows the same extinction feature.

"We originally sent the IDPs to Bradley so that he could identify the presolar phases that we had found, "Floss said. "With this new technique he then made more measurements and made this discovery."

In 2000, with help from NASA and the National Science Foundation, Washington University bought the first commercially available NanoSIMS. Made by Cameca in Paris, the NanoSIMS ion microprobe can resolve particles as small as 100 nanometers in diameter. A million such particles side-by-side would make a centimeter. The presolar grains in IDPs range from 100 nanometers to 500 nanometers.

Christine Floss | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>