Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dusting for Clues: Gemini Discovers Evidence for Recent Planet-Forming Collisions around Nearby Star

13.01.2005


Astronomers using the Gemini South 8-meter telescope in Chile have observed new details in the dusty disk surrounding the nearby star Beta Pictoris which show that a large collision between planetary-sized bodies may have occurred there as recently as the past few decades.



The mid-infrared observations provide the best evidence yet for the occurrence of energetic encounters between planetesimals (small bodies formed of rock or ice) during the process of planetary formation. Amazingly, the observations even allow speculation as to when the event might have happened.

"It is as if we were looking back about 5 billion years and watching our own solar system as it was forming into what we see today," said Dr. Charlie Telesco of the University of Florida who led the team. "Our research is a bit like a detective dusting for fingerprints to figure out a crime scene, only in this case we use the dust as a tracer to show what has happened within the cloud. The properties of the dust show not only that this was a huge collision, but that it probably happened recently in both astronomical and even on human timescales."


The team’s data revealed a significantly higher concentration of small dust grains in one region of the debris disk that gave the Beta Pictoris a lopsided appearance in previous observations. Dr Mark Wyatt, of the UK Astronomy Technology Centre in Edinburgh, has been modelling the structure of Beta Pictoris’ dust disk, to understand the observations. He explains: "When a collision occurs, dust that is as fine as that we are seeing is rapidly blown away from the star, like ash from the charred remains of a fire. The fact that we can still see so much fine dust in this region means that it must have been produced very recently."

Disks of material surrounding stars such as Beta Pictoris are thought to contain objects of all sizes, from small dust grains similar to household dust to large planetesimals, or developing planets. As all of these objects orbit around the star, just like the Earth circles the Sun, they occasionally collide. The largest of these catastrophic encounters leave behind tell-tail debris clouds of fine dust observable at infrared wavelengths. By collecting high-resolution images from across a broad swath of the thermal infrared part of the spectrum, the research team from the U.S., UK and Chile analyzed images of a cloud in the larger Beta Pictoris disk which has properties expected in a post-collision aftermath.

A collision similar to that proposed here may well have created our own Moon several billion years ago when a Mars-sized body collided with what would eventually become the Earth. While the Moon itself formed out of large rocks and debris created by the collision, the small dust particles were blown away by radiation pressure from the young Sun. In the Beta Pictoris system radiation from the central star blows at about 30 times the intensity of the Sun, clearing out small grains even more quickly.

Because the Beta Pictoris disk appears to us edge-on, the observed asymmetry is visible as a bright “clump” in the cigar-shaped cloud of material revolving around the central star. The Gemini images also reveal new structures in the disk that might show where planets are forming in the system. The team is still studying these features, and follow-up observations are planned using Gemini South’s newly silver-coated 8-meter mirror. This silver coating (now on both Gemini instruments) makes the twin telescopes the most powerful facilities on Earth for this type of infrared research.

Beta Pictoris was one of the first "circumstellar" disks discovered by astronomers. It was initially detected in IRAS (Infrared Astronomy Satellite) data in 1983 by Fred Gillett (formerly Gemini’s Lead Scientist) and then imaged by Bradley Smith and Richard Terrile. Its lopsided nature was apparent even then, but until recently, observations yielded insufficient data at high-enough resolutions to allow a complete inventory of the dust grain size and distribution in the cloud. These recent Gemini results are a first step toward accomplishing that goal.

The Gemini data were obtained using the Gemini Thermal-Region Camera Spectrograph (T-ReCS) on the Gemini South Telescope on Cerro Pachón in Chile.

The international team published their findings and conclusions in the January 13 issue of the journal Nature and at the 205th meeting of the American Astronomical Society in San Diego California.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/beta_pict.asp

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>