Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers take revealing peek at star factory


Observations eventually expected lead to increased understanding of interstellar dust and gas

Using NASA’s orbiting Far Ultraviolet Spectroscopic Explorer, a team of astronomers from The Johns Hopkins University and elsewhere has taken an unprecedented peek beneath the "skirts" of the tunic-clad Orion the Hunter and come away with observations that may lead to enhanced knowledge of how interstellar dust absorbs and scatters ultraviolet starlight. "Understanding interstellar dust is important. After all, this is the stuff out of which, ultimately, planets, stars and even people are made," said team member Richard Conn Henry, a professor in the Henry A. Rowland Department of Physics and Astronomy at Johns Hopkins. Henry presented findings during the American Astronomical Society’s meeting this week in San Diego.

The constellation Orion, named for its resemblance to a powerful, tunic-clad hunter wielding a club and sword, is probably the greatest star factory in our galaxy, with thousands of young, hot, blue stars emerging from its great clouds of gas and dust. Led by Jayant Murthy of the Indian Institute of Astrophysics, the team examined data FUSE recorded near the most active region of current star formation.

What they saw surprised them.

"FUSE detected a spectrum of ultraviolet light in a region where there is no star at all," said Murthy, who spent many years at Johns Hopkins before going to the Indian Institute. "The spectrum is of light reflecting from the dust in a region near a quite bright star, whose spectrum is very similar to that of the reflected light we detected. At first, we thought that particular star was the original source of the light. But a closer look revealed that, despite the similarity, there were differences -- differences striking enough to allow us to conclude that the star in question could not be the source of the light that is scattering from the dust. So where was that light coming from?"

Team members suspect that the light in question emanated from the Trapezium, a cluster of stars located in the heart of the Orion Nebula. So named because the configuration of its stars resembles a geometric quadrilateral with two parallel sides, the Trapezium not only is one of the most famous multiple star systems in the night sky, but is also -- at only about 1 million years old -- the youngest.

"The ultimate aim of this work is to understand exactly in what manner the light gets reflected: What is this interstellar dust from which the stars are born?" asks David Sahnow, a research scientist in the Department of Physics and Astronomy at Johns Hopkins and a member of the investigating team. "To what extent does the dust absorb the light, and to what extent does it scatter it? For that light which is scattered, does it go backward, forward, or sideways?"

Perhaps one of the most interesting aspects of this investigation into interstellar dust is that it happened serendipitously.

"This is a great example of how science works sometimes, how you can stumble across something valuable while looking for something else," said Murthy. "We were actually taking engineering tests at some semi-random places in the sky while FUSE was thermalizing, and we noticed this. Our discovery that FUSE’s high spectral resolution can actually be applied to diffuse radiation has additional ramifications. High spectral resolution is often a key to physical understanding, and our Orion observation shows that we will be able to use this technique to more deeply understand the general diffuse background radiation over the sky."

NASA funded this research. The team hopes the agency will underwrite further investigations.

"We have submitted a proposal to NASA to use FUSE over the next year to explore the ramifications of our surprise discovery that FUSE can detect diffuse emission," Henry said. "By choosing targets carefully, we can get more easily interpreted data, allowing stronger conclusions regarding the nature of interstellar dust. The observed cosmic background is not fully understood and possibly is of new cosmological importance. We are confident that with FUSE and carefully implemented further observations, we can answer many questions for the first time."

The team’s paper on its observations of Orion has been accepted for publication by the Astrophysical Journal.

Designed and operated by a team of engineers and scientists at Johns Hopkins, FUSE is the largest astrophysics mission NASA has ever handed off to a university to manage. The 18-foot tall, 3,000 pound satellite has operated for five years from its perch 475 miles above the Earth’s surface, gathering unique data about everything from planets and nearby stars to galaxies and quasars billions of light years away.

Lisa DeNike | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>