Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spitzer space telescope reads solar system’s ’Rosetta Stone’

12.01.2005


When our solar system was young, its biggest babies--Jupiter and Saturn--threw tantrums by the trillion. The huge planets hurled ice-covered rocky bodies from the inner solar system far past the orbit of Pluto. Some of those bodies revisit their old neighborhood as "long period" comets, which have been called the Rosetta Stone of the solar system because their pristine composition holds the key to understanding how Earth and similar planets formed. Astrophysicists from the University of Minnesota and the Spitzer Science Center (California Institute of Technology) will present sharp pictures of comets and their dust trails, as well as data on comets’ chemical composition, taken during the Spitzer Space Telescope’s first year of operation during a poster session and press conference Tuesday, Jan. 11, at the American Astronomical Society meeting in San Diego.



Unlike the Hubble Space Telescope, Spitzer does not oribt Earth; instead, it travels behind the Earth in the same orbital path. It operates at infrared wavelengths, which enables it to see objects and material too cold to emit visible light. This is possible because even cold objects radiate heat to their surroundings as long as the surroundings are even colder. That heat is given off as infrared radiation; the cooler the object, the longer the wavelength of infrared light it emits.

The astrophysicists who will present the studies are Robert Gehrz, a University of Minnesota astronomy professor and key member of the team that focused Spitzer in orbit; Charles "Chick" Woodward and Michael Kelley, astronomy professor and graduate student, respectively, at the university; and William T. Reach of the Spitzer Science Center at the California Institute of Technology.


During their periodic sojourns into the inner solar system, comets are warmed by solar radiation and eject ices, gases and grains of rock. Included in the mix are organic materials and water, the building blocks of life, Gehrz said. By studying the infrared "signatures" of elements in comets, scientists have determined that some minerals in the dust evaporated from comet nuclei are similar to both common and unusual minerals on Earth.

"For example, comet dust may contain silica, the main ingredient in beach sand, or magnesium-rich olivine crystals, which are formed in cooling volcanic flows found on the beaches of Hawaii," Woodward said.

"Comets are leftovers from when the planets formed," said Gehrz. "Imaging their comae [the bright ’halos’ around comet nuclei] and tails tells us about the content of the solar system when planets were forming. With Spitzer we can see spectral [light] details in a wide variety of comets, which has never been done before because of Spitzer’s unprecedented sensitivity and range of wavelengths."

A highlight of the presentation is a study of Comet Encke, which orbits the sun every 3.3 years. Unlike more pristine comets from the netherworlds beyond Pluto’s orbit, Encke has exhausted its supply of fine particles and is now giving off larger particles that are perhaps like pea gravel. After boiling off the comet nucleus, the particles tend to spread along long dust trails that follow the comet, like box cars following an engine. Every October, the Earth passes through Encke’s dust trail and we witness the celestial fireworks known as the Taurid meteor shower, said Kelley.

A picture taken by Spitzer shows Encke along its bright debris trail, between the orbits of Mars and Jupiter as it headed away from the sun. Also visible are sharp twin jets of material coming off the nucleus. The images are already helping the scientists model how the rotating nuclei of comets eject particles as they travel around the sun.

The work was funded by NASA. Spitzer is managed by NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu
http://www.spitzer.caltech.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>