Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huygens sets off with correct spin and speed

12.01.2005


On Christmas Day 2004, the Cassini spacecraft flawlessly released ESA’s Huygens probe, passing another challenging milestone for Cassini-Huygens mission. But, with no telemetry data from Huygens, how do we know the separation went well?



At 3:00 CET on 25 December, the critical sequence loaded into the software on board Cassini was executed and, within a few seconds, Huygens was sent on its 20-day trip towards Titan. As data from Cassini confirm, the pyrotechnic devices were fired to release a set of three loaded springs, which gently pushed Huygens away from the mother spacecraft. The probe was expected to be released at a relative velocity of about 0.35 metres per second with a spin rate of about 7.5 revolutions per minute. Telemetry data from Cassini confirming the separation were collected by NASA’s Deep Space Network stations in Madrid, Spain, and Goldstone, California, when the telemetry playback signal from Cassini eventually reached the Earth.

However, these data showed only that the Cassini systems had worked, and that the Cassini ‘attitude perturbation’ (how Cassini moved in reaction to the probe’s release) were as expected. Within hours, the preliminary analysis of this data confirmed that Huygens was on the expected trajectory and spinning within the expected range. The spin imparted to Huygens is vitally important to ensure that the probe remains in a stable attitude and on course when it enters Titan’s atmosphere. So how could we check the spin rate was correct?


When the Huygens probe was being designed more than 10 years ago, it was required that the probe had to be magnetically ‘clean’ when switched off, meaning that any residual permanent magnetic fields must not interfere with the sensitive Cassini magnetometers. Later, when the probe was built, it was found that there was still a weak magnetic field produced, but within acceptable limits for Cassini’s magnetometer sensors.

However, because magnetic fields have a ‘direction’ as well as a strength, and this weak field was slightly off-centre, it effectively gave the probe a ‘left’ and a ‘right’ side (it behaves like a small magnet with a north and south pole). With the implication being that if you can detect this magnetic field, then you can also detect how it is rotating.

Following an initial suggestion by Jean-Pierre Lebreton, the Huygens Project Scientist, scientists on the Cassini Dual Technique Magnetometer (MAG) team, from Imperial College, London, and Braunschweig, confirmed that their instrument should be able to detect this small rotating magnetic field and plans were put in place to measure this during the probe release period.

Magnetometers are direct-sensing instruments that detect and measure both the strength and direction of magnetic fields in the vicinity of the instrument. The Cassini MAG is measuring these fields while Cassini is in orbit around Saturn as well as during the close Titan encounters. But, just after separation on 25 December, the MAG scientists detected fluctuations in the magnetic field around Cassini that could only have come from Huygens rotating and moving away.

Professor Michele Dougherty, Principal Investigator for MAG, said, “What was observed by MAG just after the probe separation on 25 December 2004, were weak but clear fluctuations in both magnetic sensors which reside on the 11-metre magnetometer boom. These fluctuations were a clear indication of the Huygens probe moving away from the Cassini orbiter. This signature confirmed the spin rate of the probe at 7.5 revolutions per minute, the ideal rate which was predicted, and that Huygens is well on its way to Titan.”

Former MAG Principal Investigator David Southwood, who is now the Director of Science at ESA, said, “Detecting the spin was immensely reassuring - not only did it show Huygens was rotating correctly, but also because the spin is directly related to the departure velocity, that Huygens was headed off at the right speed. It was really great to do it with an instrument I knew so well.”

Franco Bonacina | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMY0HQ3K3E_0.html
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>