Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Discover Cold, Warm and Hot Gas Around a Young Brown Dwarf

11.01.2005


A team of scientists from the University of Delaware has discovered that brown dwarfs--celestial bodies that are often referred to as failed stars--can be surrounded by clouds of very hot and very cool gas.



The UD research team of John E. Gizis, assistant professor of physics and astronomy, Harry L. Shipman, Annie Jump Cannon Chair of Physics and Astronomy, and James A. “Rusty” Harvin, researcher in physics and astronomy, used the Hubble Space Telescope to show for the first time that a brown dwarf was associated with a cloud or disk containing molecular hydrogen gas.

The team members presented their results in a poster session dedicated to the study of brown dwarfs and exoplanets and at a news conference held Monday, Jan. 10, during a meeting of the American Astronomical Society in San Diego, Calif.


The UD researchers studied the space object that goes by the name of 2MASSW J1207334-393254, or simply 1207, for the past year. The object is located in the constellation of the Centaur but is so small and dim that it is impossible to see with the unaided eye or even with a pair of binoculars.

The team obtained ultraviolet light observations from a piece of equipment on the Hubble Space Telescope known as the Space Telescope Imaging Spectrograph, or STIS, which failed just weeks after the observations were made.

The team’s most interesting finding was that this brown dwarf was surrounded by a cloud of cold gas containing the common element hydrogen in molecular form. The fingerprints of molecular hydrogen are concentrations of ultraviolet emissions at particular wavelengths, in this case 1503 and 1530 Angstroms.

Hydrogen molecules had previously been found around very young stars but never before in a brown dwarf. "It’s really amazing that the gas around this tiny brown dwarf is behaving so much like the gas around much more massive newly forming stars, called T Tau stars," Gizis said.

Also noteworthy was the finding of other ultraviolet fingerprints from very hot gas. "This star, in the ultraviolet, looks much like bigger and hotter stars like our sun," Shipman said. “Our own sun is surrounded by a layer of warm gas, called the chromosphere, and a layer of very hot gas, called the corona. A thin layer of hot gas, with temperatures of a hundred thousand degrees, separates the two. The brown dwarf 1207 has warm gas and the hot hundred thousand-degree gas. So far, no one has detected the very hot gas in any possible corona around 1207.”

An interesting characteristic of the spectrum is the absence of the chemical element silicon. Most stars that show evidence of hot gas also show signs of familiar chemical elements like carbon, nitrogen and oxygen, all of which are seen in the ultraviolet light from 1207. But, these other stars also show silicon, which Shipman said is absent in the ultraviolet light from 1207. "A likely place for the silicon is in a dusty disk," Shipman said, because the dust would contain a lot of silicon, just like rocks on Earth.

The team would like to look for similar clouds of hot and cool gas around other brown dwarfs, but it will have to wait for successful STIS repair missions. The proposed repair missions would include installation of the Cosmic Origins Spectrograph, or COS, on the Hubble, which could do the additional observations.

"We had this door opened, showing us some wonderful things happening around a young brown dwarf, but then with the failure of STIS and the uncertainty about repair missions, the door was closed again," Gizis said.

Brown dwarfs are larger than planets like Jupiter and smaller than stars. Stars, which are at least 70 times as massive as Jupiter, shine because of self-sustaining nuclear reactions in their cores. When gravity forces young brown dwarfs like 1207 to contract, their insides heat up and they glow, allowing observers to detect them.

The visible light from 1207 indicates that it is fairly hot for a brown dwarf, with a temperature around 2500 degrees, Shipman said. Its presence in a young star-forming region indicates that it is only about 10 million years old, a newborn baby in astronomical terms.

The UD team’s work is supported by the National Aeronautics and Space Administration (NASA) and by the National Science Foundation.

| newswise
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>