Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Discover Cold, Warm and Hot Gas Around a Young Brown Dwarf

11.01.2005


A team of scientists from the University of Delaware has discovered that brown dwarfs--celestial bodies that are often referred to as failed stars--can be surrounded by clouds of very hot and very cool gas.



The UD research team of John E. Gizis, assistant professor of physics and astronomy, Harry L. Shipman, Annie Jump Cannon Chair of Physics and Astronomy, and James A. “Rusty” Harvin, researcher in physics and astronomy, used the Hubble Space Telescope to show for the first time that a brown dwarf was associated with a cloud or disk containing molecular hydrogen gas.

The team members presented their results in a poster session dedicated to the study of brown dwarfs and exoplanets and at a news conference held Monday, Jan. 10, during a meeting of the American Astronomical Society in San Diego, Calif.


The UD researchers studied the space object that goes by the name of 2MASSW J1207334-393254, or simply 1207, for the past year. The object is located in the constellation of the Centaur but is so small and dim that it is impossible to see with the unaided eye or even with a pair of binoculars.

The team obtained ultraviolet light observations from a piece of equipment on the Hubble Space Telescope known as the Space Telescope Imaging Spectrograph, or STIS, which failed just weeks after the observations were made.

The team’s most interesting finding was that this brown dwarf was surrounded by a cloud of cold gas containing the common element hydrogen in molecular form. The fingerprints of molecular hydrogen are concentrations of ultraviolet emissions at particular wavelengths, in this case 1503 and 1530 Angstroms.

Hydrogen molecules had previously been found around very young stars but never before in a brown dwarf. "It’s really amazing that the gas around this tiny brown dwarf is behaving so much like the gas around much more massive newly forming stars, called T Tau stars," Gizis said.

Also noteworthy was the finding of other ultraviolet fingerprints from very hot gas. "This star, in the ultraviolet, looks much like bigger and hotter stars like our sun," Shipman said. “Our own sun is surrounded by a layer of warm gas, called the chromosphere, and a layer of very hot gas, called the corona. A thin layer of hot gas, with temperatures of a hundred thousand degrees, separates the two. The brown dwarf 1207 has warm gas and the hot hundred thousand-degree gas. So far, no one has detected the very hot gas in any possible corona around 1207.”

An interesting characteristic of the spectrum is the absence of the chemical element silicon. Most stars that show evidence of hot gas also show signs of familiar chemical elements like carbon, nitrogen and oxygen, all of which are seen in the ultraviolet light from 1207. But, these other stars also show silicon, which Shipman said is absent in the ultraviolet light from 1207. "A likely place for the silicon is in a dusty disk," Shipman said, because the dust would contain a lot of silicon, just like rocks on Earth.

The team would like to look for similar clouds of hot and cool gas around other brown dwarfs, but it will have to wait for successful STIS repair missions. The proposed repair missions would include installation of the Cosmic Origins Spectrograph, or COS, on the Hubble, which could do the additional observations.

"We had this door opened, showing us some wonderful things happening around a young brown dwarf, but then with the failure of STIS and the uncertainty about repair missions, the door was closed again," Gizis said.

Brown dwarfs are larger than planets like Jupiter and smaller than stars. Stars, which are at least 70 times as massive as Jupiter, shine because of self-sustaining nuclear reactions in their cores. When gravity forces young brown dwarfs like 1207 to contract, their insides heat up and they glow, allowing observers to detect them.

The visible light from 1207 indicates that it is fairly hot for a brown dwarf, with a temperature around 2500 degrees, Shipman said. Its presence in a young star-forming region indicates that it is only about 10 million years old, a newborn baby in astronomical terms.

The UD team’s work is supported by the National Aeronautics and Space Administration (NASA) and by the National Science Foundation.

| newswise
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>