Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good news from big bad black holes

11.01.2005


Astronomers have discovered how ominous black holes can create life in the form of new stars, proving that jet-induced star formation may have played an important role in the formation of galaxies in the early universe.


This false-color image incorporates infrared data (invisible to the human eye). The blue regions (essentially the whole of Minkowski’s Object) show enhanced star formation. The red background galaxy and two red foreground stars appear in sharp contrast. The red overlay is the radio jet.


Using the Near Infrared Camera (NIRC) at the Keck Observatory and Hubble Space Telescope, this false-color image incorporates infrared data (invisible to the human eye) and does not include the radio jet.



This false-color image incorporates infrared data (invisible to the human eye). The blue regions (essentially the whole of Minkowski’s Object) show enhanced star formation. The red background galaxy and two red foreground stars appear in sharp contrast. The red overlay is the radio jet. Click here for high-resolution image.

Using the Very Large Array (VLA) at the National Radio Astronomy Observatory in New Mexico, the Keck telescopes in Hawaii and the Hubble Space Telescope, astronomers Wil van Breugel and Steve Croft have shown that "Minkowski’s Object," a peculiar starburst system in the NGC 541 radio galaxy, formed when a radio jet – undetectable in visible light but revealed by radio observations– emitted from a black hole collided with dense gas.


The researchers carried out the observations after computer simulations at Lawrence Livermore National Laboratory by Chris Fragile, Peter Anninos and Stephen Murray had shown that jets may trigger the collapse of interstellar clouds and induce star formation.

The astronomers will present their findings today at the American Astronomical Society 205th national meeting, in San Diego, Calif. "Some 20 years ago this kind of thinking was thought to be science fiction," said van Breugel, who along with Croft works at the Laboratory’s Institute for Geophysics and Planetary Physics. "It brings poetic justice to black holes because we think of them as sucking things in, but we’ve shown that when a jet emits from a black hole, it can bring new life by collapsing clouds and creating new stars."

Radio jets are formed when material falls into massive black holes. Magnetic fields around the black holes accelerate electrons to almost the speed of light. These electrons are then propelled out in narrow jets and radiate at radio frequencies because of their motion in the magnetic fields. The jets may affect the formation of stars when they collide with dense gas.

Using the Near Infrared Camera (NIRC) at the Keck Observatory and Hubble Space Telescope, this false-color image incorporates infrared data (invisible to the human eye) and does not include the radio jet. Click here for high-resolution image. But only recently have van Breugel and Croft figured out how this happens. The regions between stars in a galaxy are filled with mainly gas and dust, and are commonly called the interstellar medium. The gas appears primarily in two forms as cold clouds of atomic or molecular hydrogen or as hot ionized hydrogen near young stars.

In the case of the recent discovery, the Livermore researchers observed that when a radio jet ran into a hot dense hydrogen medium in NGC 541, the medium started to cool down and formed a large neutral hydrogen cloud and, in turn, triggered star formation. Although the cloud did not emit visible radiation, it was detected by its radio frequency emission. "The formation of massive black holes is critical to the formation of new galaxies," Croft said.

Van Breugel, who has been studying black holes since his days as a postdoctoral fellow more than 20 years ago, said the recent observations are another good reason to study the relationship between black holes and early galaxies. He said the conditions his team saw in NGC 541 may be important in understanding the formation of galaxies in the early universe. "Our observations show that jets from black holes can trigger extra star formation. In the early universe this process may be important because the galaxies are still young, with lots of hydrogen gas but few stars, and the black holes are more active," he said.

According to the big bang theory, the universe is believed to have originated approximately 13.5 billion years ago from a cosmic explosion that hurled matter in all directions. Although van Breugel and Croft observed the jets by using the VLA, Keck and Hubbel images, they also said that the Livermore computer simulations by Fragile, Anninos and Murray were crucial to verify that this is happening.

NGC 541 is approximately 216 million light years from Earth and is roughly half the size of the Milky Way.

In addition to van Breugel and Croft, other collaborators on the project include W. de Vries, UC Davis; J. H. van Gorkom, Columbia University; R. Morganti and T. Osterloo, ASTRON, Netherlands; M. Dopita, Australian National University; C. Fragile, UC Santa Barbara; and Anninos and Murray, LLNL.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>