Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rapidly rotating star dubbed ’King of Spin’ by research team


New ultraviolet observations indicate a Milky Way star is spinning nearly 200 times faster than Earth’s sun, the probable result of a merger between two sun-like stars whose binary orbit recently collapsed, according to a University of Colorado at Boulder astronomer.

The yellow giant, known as FK Comae Berenices, or FK Com, is 10 times larger than the sun and is emitting spectacular amounts of X-rays, ultraviolet light and radio waves as it rotates furiously, said Senior Research Associate Thomas Ayres of CU-Boulder’s Center for Astrophysics and Space Astronomy.

Dubbed the "King of Spin" by the research team, FK Com is the namesake of a rare class of fast-rotating yellow giants noted for high levels of coronal magnetic activity, said Ayres. "FK Com objects are oddballs because most giant stars rotate very slowly. That’s why many theorists now believe binary mergers are the best way to explain the existence of these rare, ultra-fast rotators," he said.

Ayres presented a paper on the subject at the 205th meeting of the American Astronomical Society held Jan. 9 to Jan. 13 in San Diego. Co-authors on the paper include Alex Brown and Graham Harper of CU-Boulder’s CASA, Heidi Korhonen of Germany’s Potsdam University and Seth Redfield of the University of Texas, Austin.

"The negative feedback of magnetic activity on the orbit of stars in close binary systems must produce a number of these objects throughout our galaxy," Ayres said. "It’s fortunate to have one that is so near to its birth, actually its rebirth, and which is close enough to Earth to be observed in detail."

FK Com is located 800 light-years from Earth, relatively close by galactic standards, he said. One light year is about 6 trillion miles.

The team observed FK Com with the Far Ultraviolet Spectroscopic Explorer satellite, or FUSE, launched in 1999 to probe the far UV radiation portion of the light spectrum invisible to the Hubble Space Telescope. The researchers used FUSE to observe the star for four hours on Feb. 12, 2004.

The rotation of FK Com recorded in UV light is roughly 200 miles per second, about twice that measured previously in the visible part of the spectrum, he said.

FK Com is covered with dark regions that are similar to sunspots but much larger and more pervasive, Ayres said. "This object seems to be flaring practically all of the time and often doubles or triples its vast X-ray output, which is already 100,000 times that of the sun, during these episodes."

The speedy rotation seen in the UV spectrum likely is caused by the star’s slingshot prominences, which are massive, hot tubes of gas similar to magnetic loops that shoot out from the surface of the sun into its corona, he said. Up to several million miles long, the prominences are whipping around the star at much higher speeds than the surface rotation, much like the outer edge of a phonograph record moves faster than the inner part.

The research team believes the coronal wind near such prominences is carrying away large amounts of angular momentum, or spin, from the star. This eventually will "brake" the star’s fast rotation, much like a twirling figure skater extends her arms in order to slow down, Ayres said.

FK Com is an "extreme case" of sun-like magnetic activity, he said. "By examining the extremes closely, we can gain insight into the inner workings of these violent cosmic phenomena, which studies of our own, very inactive sun could not reveal."

The international FUSE mission involves science team members from the United States, France and Canada. Four FUSE telescopes collect and funnel UV light into a $9 million spectrograph, which was designed and built at CU-Boulder and breaks down the light like sunbeams passing through a prism.

The FUSE mission is managed and operated for NASA by Johns Hopkins University in Baltimore, Md. FUSE observations and research on FK Com was supported by NASA through the FUSE Guest Investigator program.

Thomas Ayres | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>