Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery By UCSD Astronomers Poses A Cosmic Puzzle: Can A ’Distant’ Quasar Lie Within A Nearby Galaxy?

11.01.2005


An international team of astronomers has discovered within the heart of a nearby spiral galaxy a quasar whose light spectrum indicates that it is billions of light years away. The finding poses a cosmic puzzle: How could a galaxy 300 million light years away contain a stellar object several billion light years away?


Photo of nearby spiral galaxy NCG 7319 with high red-shift quasar at arrow (below). Credit: NASA/Hubble Space Telescope




The team’s findings, which were presented today in San Diego at the January meeting of the American Astronomical Society and which will appear in the February 10 issue of the Astrophysical Journal, raise a fundamental problem for astronomers who had long assumed that the “high redshifts” in the light spectra of quasars meant these objects were among the fastest receding objects in the universe and, therefore, billions of light years away.

“Most people have wanted to argue that quasars are right at the edge of the universe,” said Geoffrey Burbidge, a professor of physics and astronomer at the University of California at San Diego’s Center for Astrophysics and Space Sciences and a member of the team. “But too many of them are being found closely associated with nearby, active galaxies for this to be accidental. If this quasar is physically associated with this galaxy, it must be close by.”


Astronomers generally estimate the distances to stellar objects by the speed with which they are receding from the earth. That recession velocity is calculated by measuring the amount the star’s light spectra is shifted to the lower frequency, or red end, of the light spectrum. This physical phenomenon, known as the Doppler Effect, can be experienced by someone standing near train tracks when the whistle or engine sounds from a moving train becomes lower in pitch, or sound frequency, as the train travels past.

Astronomers have used redshifts and the known brightness of stars as fundamental yardsticks to measure the distances to stars and galaxies. However, Burbidge said they have been unable to account for the growing number of quasi-stellar objects, or quasars—intense concentrations of energy believed to be produced by the swirling gas and dust surrounding massive black holes—with high redshifts that have been closely associated with nearby galaxies. “If it weren’t for this redshift dilemma, astronomers would have thought quasars originated from these galaxies or were fired out from them like bullets or cannon balls,” he added.

The discovery reported by the team of astronomers, which includes his spouse, E. Margaret Burbidge, another noted astronomer and professor of physics at UCSD, is especially significant because it is the most extreme example of a quasar with a very large redshift in a nearby galaxy. “No one has found a quasar with such a high redshift, with a redshift of 2.11, so close to the center of an active galaxy,” said Geoffrey Burbidge.

Margaret Burbidge, who reported the team’s finding at the meeting, said the quasar was first detected by the ROSAT X-ray satellite operated by the Max-Planck Institute for Astrophysics in Garching, Germany and found to be closely associated with the nucleus of the spiral galaxy NGC 7319. That galaxy is unusual because it lies in a group of interacting galaxies called Stephan’s Quintet.

Using a three-meter telescope operated by the University of California at Lick Observatory in the mountains above San Jose and the university’s 10-meter Keck I telescope on Mauna Kea in Hawaii, she and her team measured the redshifts of the spiral galaxy and quasar and found that the quasar appears to be interacting with the interstellar gas within the galaxy.

Because quasars and black holes are generally found within the most energetic parts of galaxies, their centers, the astronomers are further persuaded that this particular quasar resides within this spiral galaxy. Geoffrey Burbidge added that the fact that the quasar is so close to the center of this galaxy, only 8 arc seconds from the nucleus, and does not appear to be shrouded in any way by interstellar gas make it highly unlikely that the quasar lies far behind the galaxy, its light shining through the galaxy near its center by “an accident of projection.” “If this quasar is close by, its redshift cannot be due to the expansion of the universe,” he adds. “If this is the case, this discovery casts doubt on the whole idea that quasars are very far away and can be used to do cosmology.”

Other members of the team, besides Geoffrey and Margaret Burbidge, included Vesa Junkkarinen, a research physicist at UCSD; Pasquale Galianni of the University of Lecce in Italy; and Halton Arp and Stefano Zibetti of the Max-Planck Institute for Astrophysics in Garching, Germany.

Geoffrey Burbidge | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>