Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant telescope will keep an eye on planets in other solar systems

05.01.2005


MIT astrophysicists and their colleagues are excited about the latest milestone toward developing a giant telescope that among other things will allow direct observations of planets orbiting stars in solar systems beyond ours.

On Dec. 13 the Carnegie Observatories of the Carnegie Institution signed an agreement with the University of Arizona’s Steward Observatory Mirror Lab to produce the first mirror for the Giant Magellan Telescope (GMT). The telescope will have a diameter of about 25.4 meters or 83 feet--making it about as wide as an eight-story building is tall.

Slated for completion in 2016 at Carnegie’s Las Campanas Observatory in Chile, the GMT will have 10 times the resolution of the Hubble Space Telescope enabling a variety of new projects and observations.



"At the very top of that list would be the direct observation of exo-planets around nearby stars and observation of objects yet younger (and therefore more distant) than the youngest objects observable today," said Paul Schechter, the William A. M. Burden Professor of Astrophysics, who leads the MIT group that is part of the eight-member consortium developing the GMT.

Other members are Carnegie Observatories, Harvard University, Smithsonian Astrophysical Observatory, University of Arizona, University of Michigan, University of Texas at Austin, and Texas A&M University.

The new telescope will be composed of seven, 8.4-meter primary mirrors arranged in a floral pattern. It builds on the successful heritage of the two 6.5-meter Magellan telescopes, the first of which began science operations in early 2001. "The same individuals involved in the building of Magellan constitute the core of the GMT design group," Schechter said.

What role do ground-based telescopes play in the era of satellite telescopes like the Hubble? For one, said Schechter, "ground-based telescopes can be much bigger, which is important because a telescope’s light-gathering power is proportional to the square of its diameter. The Hubble is only 2.4 meters in diameter, and the next-generation space telescope, which ought to be finished at about the same time as the GMT, will be smaller than the present Magellan telescopes."

Detailed information about the design of the GMT and the science that it will perform is located on the web (http://www.gmto.org/).

Elizabeth Thomson | MIT News Office
Further information:
http://www.gmto.org/
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>