Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant telescope will keep an eye on planets in other solar systems

05.01.2005


MIT astrophysicists and their colleagues are excited about the latest milestone toward developing a giant telescope that among other things will allow direct observations of planets orbiting stars in solar systems beyond ours.

On Dec. 13 the Carnegie Observatories of the Carnegie Institution signed an agreement with the University of Arizona’s Steward Observatory Mirror Lab to produce the first mirror for the Giant Magellan Telescope (GMT). The telescope will have a diameter of about 25.4 meters or 83 feet--making it about as wide as an eight-story building is tall.

Slated for completion in 2016 at Carnegie’s Las Campanas Observatory in Chile, the GMT will have 10 times the resolution of the Hubble Space Telescope enabling a variety of new projects and observations.



"At the very top of that list would be the direct observation of exo-planets around nearby stars and observation of objects yet younger (and therefore more distant) than the youngest objects observable today," said Paul Schechter, the William A. M. Burden Professor of Astrophysics, who leads the MIT group that is part of the eight-member consortium developing the GMT.

Other members are Carnegie Observatories, Harvard University, Smithsonian Astrophysical Observatory, University of Arizona, University of Michigan, University of Texas at Austin, and Texas A&M University.

The new telescope will be composed of seven, 8.4-meter primary mirrors arranged in a floral pattern. It builds on the successful heritage of the two 6.5-meter Magellan telescopes, the first of which began science operations in early 2001. "The same individuals involved in the building of Magellan constitute the core of the GMT design group," Schechter said.

What role do ground-based telescopes play in the era of satellite telescopes like the Hubble? For one, said Schechter, "ground-based telescopes can be much bigger, which is important because a telescope’s light-gathering power is proportional to the square of its diameter. The Hubble is only 2.4 meters in diameter, and the next-generation space telescope, which ought to be finished at about the same time as the GMT, will be smaller than the present Magellan telescopes."

Detailed information about the design of the GMT and the science that it will perform is located on the web (http://www.gmto.org/).

Elizabeth Thomson | MIT News Office
Further information:
http://www.gmto.org/
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>