Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers present Cassini findings at Saturn

20.12.2004


As NASA’s Cassini spacecraft approached Saturn last July, it found evidence that lightning on Saturn is roughly one million times stronger than lightning on Earth.



That’s just one of several Cassini findings that University of Iowa Space Physicist Don Gurnett will present in a paper to be published Thursday, Dec. 16 in Science Express, an online version of the journal Science, and in a talk to be delivered Friday, Dec. 17 at a meeting of the American Geophysical Union in San Francisco.

Other findings include:

  • Cassini impacted dust particles as it traversed Saturn’s rings.
  • Saturn’s radio rotation rate varies.

The comparison between Saturn’s enormously strong lightning and Earth’s lightning began several years ago as the Cassini spacecraft prepared for its journey to Saturn by swinging past the Earth to receive a gravitational boost. At that time, Cassini started detecting radio signals from Earth’s lightning as far out as 89,200 kilometers from the Earth’s surface. In contrast, as Cassini approached Saturn, it started detecting radio signals from lightning about 161 million kilometers from the planet. "This means that radio signals from Saturn’s lightning are on the order of one million times stronger than Earth’s lightning. That’s just astonishing to me!" says Gurnett, who notes that some radio signals have been linked to storm systems observed by the Cassini imaging instrument.


Earth’s lightning is commonly detected on AM radios, a technique similar to that used by scientists monitoring signals from Cassini.

Regarding Saturn’s rings, Gurnett says that the Cassini Radio and Plasma Wave Science (RPWS) instrument detected large numbers of dust impacts on the spacecraft. Gurnett and his science team found that as Cassini approached the inbound ring plane crossing, the impact rate began to increase dramatically some two minutes before the ring plane crossing, then reached a peak of more than 1,000 per second at almost exactly the time of the ring plane crossing, and finally decreased to pre-existing levels about two minutes later. Gurnett notes that the particles are probably quite small, only a few microns in diameter, otherwise they would have damaged the spacecraft

Finally, variations in Saturn’s radio rotation rate came as a surprise. Based upon more than one year of Cassini measurements, the rate is 10 hours 45 minutes and 45 seconds, plus or minus 36 seconds. That’s about six minutes longer than the value recorded by the Voyager 1 and 2 flybys of Saturn in 1980-81. Scientists use the rotation rate of radio emissions from the giant gas planets such as Saturn and Jupiter to determine the rotation rate of the planets themselves because the planets have no solid surfaces and are covered by clouds that make direct visual measurements impossible.

Gurnett suggests that the change in the radio rotation rate is difficult to explain. "Saturn is unique in that its magnetic axis is almost exactly aligned with its rotational axis. That means there is no rotationally induced wobble in the magnetic field, so there must be some secondary effect controlling the radio emission. We hope to nail that down during the next four to eight years of the Cassini mission."

One possible scenario was suggested nearly 20 years ago. Writing in the May 1985 issue of "Geophysical Research Letters," Alex J. Dessler, a senior research scientist at the Lunar and Planetary Laboratory, University of Arizona, argued that the magnetic fields of gaseous giant planets, such as Saturn and Jupiter, are more like that of the sun than of the Earth. The sun’s magnetic field does not rotate as a solid body. Instead, its rotation period varies with latitude. Commenting earlier this year on the work of Gurnett and his team, Dessler said, "This finding is very significant because it demonstrates that the idea of a rigidly rotating magnetic field is wrong. Saturn’s magnetic field has more in common with the sun than the Earth. The measurement can be interpreted as showing that the part of Saturn’s magnetic field that controls the radio emissions has moved to a higher latitude during the last two decades."

The radio sounds of Saturn’s rotation -- resembling a heartbeat -- and other sounds of space can be heard by visiting Gurnett’s Web site at: http://www-pw.physics.uiowa.edu/space-audio.

Cassini, carrying 12 scientific instruments, on June 30, 2004 became the first spacecraft to orbit Saturn and begin a four-year study of the planet, its rings and its 31 known moons. The $1.4 billion spacecraft is part of the $3.3 billion Cassini-Huygens Mission that includes the Huygens probe, a six-instrument European Space Agency probe, scheduled to land on Titan, Saturn’s largest moon, in January 2005.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu
http://www.nasa.gov/cassini

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>