Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new twist on an old nebula

20.12.2004


One of the nearest and brightest planetary nebulae has a surprisingly complex 3-D structure


Helix nebula Courtesy of C. Robert O’Dell



In a process comparable to that of an artist who turns a two-dimensional canvas into a three-dimensional work of art, astronomers use the two dimensional images that they capture in their high-powered telescopes to reconstruct the three-dimensional structures of celestial objects.

The latest example of this reconstructive artistry is a new model of the Helix Nebula--one of the nearest and brightest of the planetary nebulae, which are the Technicolor clouds of dust and glowing gas produced by exploding stars. Efforts of this sort are providing important new insights into the process that stars like the sun go through just before their fiery deaths.


The analysis, published in the November issue of the Astronomical Journal, was conducted by a team of astronomers led by C. Robert O’Dell of Vanderbilt University. Combining sharp new images from the Hubble Space Telescope with the best ground-based optical and radio images and spectra, the astronomers have determined that the Helix Nebula is not, in fact, shaped in a snake-like coil as some earlier analyses had concluded. Instead of a helical shape, they have found that the nebula consists of inner and outer shells of dust and gas that are oriented at nearly 90 degrees from one another.

This new information has allowed the researchers to determine not only the relative positions of the nebula’s major features, but also the speed and direction that the expanding dust and gas are moving. For example, they figured out why the larger disk is brighter on one side than on the other. It is because the nebula is moving through the interstellar medium, something like a boat plowing through water. In this case, however, the encounter compresses the colliding gases and causes them to glow more brightly than they do in other parts of the ring.

"Our new observations show that the previous model of the Helix was much too simple," O’Dell says. "About a year ago, we believed the Helix was a bagel shape, filled in the middle. Now we see that this filled bagel is just the inside of the object. A much larger disk, shaped like a washer, surrounds the filled bagel. This disk is oriented almost perpendicular to the bagel."

Team member Peter McCullough adds, "To visualize the Helix’s geometry imagine a lens from a pair of glasses that was tipped at an angle to the frame’s rim. That would be an odd-looking pair of glasses. Well, in the case of the Helix, finding a disk inclined at an angle to a ring would be a surprise. But that is, in fact, what we found." He and Margaret Meixner, both of the Space Telescope Science Institute, contributed to the study.

Astronomers suspect that these complex patterns hold important information about the conditions that existed in their progenitor stars before they exploded. "We still don’t understand how you get such a shape," O’Dell says. "If we could explain how this shape was created, then we could explain the late stages of certain types of stars,"

Currently, scientists believe that several of a star’s properties may influence the way in which dust and gas is ejected when it explodes. These include the star’s speed and axis of rotation; the strength and axis of its magnetic field; and, the influence of a close companion star if it has one.

One group of astronomers argues that the gravitational influence of companion stars alone can produce these patterns and that a star’s rotation and magnetic field are not important. Other scientists, however, contend that rotation, magnetic field and the influence of companion stars all play a role.

One way that astronomers classify planetary nebulae is by the number of axes that they contain. A non-polar nebula is one that has no axes: material is sloughed off the star uniformly to form a spherical cloud of dust and gas. A bipolar nebula is one that is created by ejecting material primarily in a flat disk perpendicular to a single axis of symmetry. Finally, a quadra-polar nebula possesses material expanding outward in two disks, each with a different orientation. The new study finds that the Helix nebula is quadra-polar. Space-based X-ray observations suggest that the Helix nebula was produced by a binary star system with the two stars so closely that they appear as a single image in optical telescopes. This suggests that the orientation of one disk may have been influenced by the orbit of the companion star and that the orientation of the other disk was determined by the dying star’s spin axis or the axis of its magnetic field.

"The new model strengthens the argument that the star’s rotation and magnetic field axes play a role because the proponents of the companion-star-only model can’t explain quadra-polar patterns like this," says O’Dell.

Another discovery that surprised the researchers is that the two disks appear to have been formed at different times. The nebula’s inner disk is expanding slightly faster than the outer disk leading the astronomers to estimate that the inner disk was formed about 6,600 years ago while the outer ring is about 12,000 years ago.

Why did the star expel matter at two different epochs, leaving a gap of 6,000 years? Right now, only the Helix Nebula knows the answer, the astronomers say.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible
30.05.2017 | ICFO-The Institute of Photonic Sciences

nachricht New Method of Characterizing Graphene
30.05.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>