Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new twist on an old nebula

20.12.2004


One of the nearest and brightest planetary nebulae has a surprisingly complex 3-D structure


Helix nebula Courtesy of C. Robert O’Dell



In a process comparable to that of an artist who turns a two-dimensional canvas into a three-dimensional work of art, astronomers use the two dimensional images that they capture in their high-powered telescopes to reconstruct the three-dimensional structures of celestial objects.

The latest example of this reconstructive artistry is a new model of the Helix Nebula--one of the nearest and brightest of the planetary nebulae, which are the Technicolor clouds of dust and glowing gas produced by exploding stars. Efforts of this sort are providing important new insights into the process that stars like the sun go through just before their fiery deaths.


The analysis, published in the November issue of the Astronomical Journal, was conducted by a team of astronomers led by C. Robert O’Dell of Vanderbilt University. Combining sharp new images from the Hubble Space Telescope with the best ground-based optical and radio images and spectra, the astronomers have determined that the Helix Nebula is not, in fact, shaped in a snake-like coil as some earlier analyses had concluded. Instead of a helical shape, they have found that the nebula consists of inner and outer shells of dust and gas that are oriented at nearly 90 degrees from one another.

This new information has allowed the researchers to determine not only the relative positions of the nebula’s major features, but also the speed and direction that the expanding dust and gas are moving. For example, they figured out why the larger disk is brighter on one side than on the other. It is because the nebula is moving through the interstellar medium, something like a boat plowing through water. In this case, however, the encounter compresses the colliding gases and causes them to glow more brightly than they do in other parts of the ring.

"Our new observations show that the previous model of the Helix was much too simple," O’Dell says. "About a year ago, we believed the Helix was a bagel shape, filled in the middle. Now we see that this filled bagel is just the inside of the object. A much larger disk, shaped like a washer, surrounds the filled bagel. This disk is oriented almost perpendicular to the bagel."

Team member Peter McCullough adds, "To visualize the Helix’s geometry imagine a lens from a pair of glasses that was tipped at an angle to the frame’s rim. That would be an odd-looking pair of glasses. Well, in the case of the Helix, finding a disk inclined at an angle to a ring would be a surprise. But that is, in fact, what we found." He and Margaret Meixner, both of the Space Telescope Science Institute, contributed to the study.

Astronomers suspect that these complex patterns hold important information about the conditions that existed in their progenitor stars before they exploded. "We still don’t understand how you get such a shape," O’Dell says. "If we could explain how this shape was created, then we could explain the late stages of certain types of stars,"

Currently, scientists believe that several of a star’s properties may influence the way in which dust and gas is ejected when it explodes. These include the star’s speed and axis of rotation; the strength and axis of its magnetic field; and, the influence of a close companion star if it has one.

One group of astronomers argues that the gravitational influence of companion stars alone can produce these patterns and that a star’s rotation and magnetic field are not important. Other scientists, however, contend that rotation, magnetic field and the influence of companion stars all play a role.

One way that astronomers classify planetary nebulae is by the number of axes that they contain. A non-polar nebula is one that has no axes: material is sloughed off the star uniformly to form a spherical cloud of dust and gas. A bipolar nebula is one that is created by ejecting material primarily in a flat disk perpendicular to a single axis of symmetry. Finally, a quadra-polar nebula possesses material expanding outward in two disks, each with a different orientation. The new study finds that the Helix nebula is quadra-polar. Space-based X-ray observations suggest that the Helix nebula was produced by a binary star system with the two stars so closely that they appear as a single image in optical telescopes. This suggests that the orientation of one disk may have been influenced by the orbit of the companion star and that the orientation of the other disk was determined by the dying star’s spin axis or the axis of its magnetic field.

"The new model strengthens the argument that the star’s rotation and magnetic field axes play a role because the proponents of the companion-star-only model can’t explain quadra-polar patterns like this," says O’Dell.

Another discovery that surprised the researchers is that the two disks appear to have been formed at different times. The nebula’s inner disk is expanding slightly faster than the outer disk leading the astronomers to estimate that the inner disk was formed about 6,600 years ago while the outer ring is about 12,000 years ago.

Why did the star expel matter at two different epochs, leaving a gap of 6,000 years? Right now, only the Helix Nebula knows the answer, the astronomers say.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>