Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new twist on an old nebula

20.12.2004


One of the nearest and brightest planetary nebulae has a surprisingly complex 3-D structure


Helix nebula Courtesy of C. Robert O’Dell



In a process comparable to that of an artist who turns a two-dimensional canvas into a three-dimensional work of art, astronomers use the two dimensional images that they capture in their high-powered telescopes to reconstruct the three-dimensional structures of celestial objects.

The latest example of this reconstructive artistry is a new model of the Helix Nebula--one of the nearest and brightest of the planetary nebulae, which are the Technicolor clouds of dust and glowing gas produced by exploding stars. Efforts of this sort are providing important new insights into the process that stars like the sun go through just before their fiery deaths.


The analysis, published in the November issue of the Astronomical Journal, was conducted by a team of astronomers led by C. Robert O’Dell of Vanderbilt University. Combining sharp new images from the Hubble Space Telescope with the best ground-based optical and radio images and spectra, the astronomers have determined that the Helix Nebula is not, in fact, shaped in a snake-like coil as some earlier analyses had concluded. Instead of a helical shape, they have found that the nebula consists of inner and outer shells of dust and gas that are oriented at nearly 90 degrees from one another.

This new information has allowed the researchers to determine not only the relative positions of the nebula’s major features, but also the speed and direction that the expanding dust and gas are moving. For example, they figured out why the larger disk is brighter on one side than on the other. It is because the nebula is moving through the interstellar medium, something like a boat plowing through water. In this case, however, the encounter compresses the colliding gases and causes them to glow more brightly than they do in other parts of the ring.

"Our new observations show that the previous model of the Helix was much too simple," O’Dell says. "About a year ago, we believed the Helix was a bagel shape, filled in the middle. Now we see that this filled bagel is just the inside of the object. A much larger disk, shaped like a washer, surrounds the filled bagel. This disk is oriented almost perpendicular to the bagel."

Team member Peter McCullough adds, "To visualize the Helix’s geometry imagine a lens from a pair of glasses that was tipped at an angle to the frame’s rim. That would be an odd-looking pair of glasses. Well, in the case of the Helix, finding a disk inclined at an angle to a ring would be a surprise. But that is, in fact, what we found." He and Margaret Meixner, both of the Space Telescope Science Institute, contributed to the study.

Astronomers suspect that these complex patterns hold important information about the conditions that existed in their progenitor stars before they exploded. "We still don’t understand how you get such a shape," O’Dell says. "If we could explain how this shape was created, then we could explain the late stages of certain types of stars,"

Currently, scientists believe that several of a star’s properties may influence the way in which dust and gas is ejected when it explodes. These include the star’s speed and axis of rotation; the strength and axis of its magnetic field; and, the influence of a close companion star if it has one.

One group of astronomers argues that the gravitational influence of companion stars alone can produce these patterns and that a star’s rotation and magnetic field are not important. Other scientists, however, contend that rotation, magnetic field and the influence of companion stars all play a role.

One way that astronomers classify planetary nebulae is by the number of axes that they contain. A non-polar nebula is one that has no axes: material is sloughed off the star uniformly to form a spherical cloud of dust and gas. A bipolar nebula is one that is created by ejecting material primarily in a flat disk perpendicular to a single axis of symmetry. Finally, a quadra-polar nebula possesses material expanding outward in two disks, each with a different orientation. The new study finds that the Helix nebula is quadra-polar. Space-based X-ray observations suggest that the Helix nebula was produced by a binary star system with the two stars so closely that they appear as a single image in optical telescopes. This suggests that the orientation of one disk may have been influenced by the orbit of the companion star and that the orientation of the other disk was determined by the dying star’s spin axis or the axis of its magnetic field.

"The new model strengthens the argument that the star’s rotation and magnetic field axes play a role because the proponents of the companion-star-only model can’t explain quadra-polar patterns like this," says O’Dell.

Another discovery that surprised the researchers is that the two disks appear to have been formed at different times. The nebula’s inner disk is expanding slightly faster than the outer disk leading the astronomers to estimate that the inner disk was formed about 6,600 years ago while the outer ring is about 12,000 years ago.

Why did the star expel matter at two different epochs, leaving a gap of 6,000 years? Right now, only the Helix Nebula knows the answer, the astronomers say.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>