Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LCD as a molecular magnifying glass

17.12.2004


Dutch researcher Johan Hoogboom has developed a technique for making LCDs (liquid crystal displays) without the need for cleanrooms. This technique is simpler and cheaper than current methods and is based entirely upon the self-ordering of molecules on a surface. Furthermore, the chemist has shown that these LCDs can be used to make DNA visible to the naked eye.



Hoogboom constructed a surface that can align liquid-crystal molecules. For this he designed and produced an aromatic chemical compound. When this was applied to the surface used for the manufacture of LCDs, the molecules automatically organised themselves into a regular pattern. These surfaces could then align liquid crystals, which is a requirement for the construction of LCDs.

Furthermore, the researcher used these surfaces to produce a new generation of biosensors. Hoogboom demonstrated that the aligned liquid crystals could be used to make the effect of an enzyme or the presence of certain types of DNA visible, without the need for extra equipment. This opens up the way for a new generation of biosensors, which can analyse materials on the spot.


An LCD consists of two polarisation filters, placed at 90 degrees to each other. The liquid crystals are oriented parallel to the direction of their respective polariser, which causes them to adopt a helical shape inside the display. Light that passes through one filter, travels through the helix, changes its direction of polarisation by 90 degrees and can then leave through the second filter on the other side. If a voltage is placed across the display, the helical shape is lost. Light that enters on one side, then no longer changes in polarisation direction and can no longer pass through the second filter, making it appear dark.

To make an LCD, it must be possible to align the liquid crystals in a single direction, so that they are positioned parallel to the direction of both polarisation filters. The present production technique is based on a principle that has already been known for 100 years. In this technique, the aligning surfaces are made in a cleanroom by rubbing a velvet cloth in the right direction over thin polymer layers. Due to the increasing demand for larger and better displays, this method is reaching its technical limits. Further-more, the method is extremely labour intensive and highly sensitive for environmental factors, such as dust.

Johan Hoogboom has received a Talent grant from NWO with which he will take up a post-doc position at MIT in Cambridge (US) in January 2005.

The research was funded by Technology Foundation STW.

Drs Johan Hoogboom | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_677HYH_Eng
http://www.nwo.nl

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>