Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new unidentified very high energy gamma-ray source in our Galaxy


A European team based in Heidelberg (Germany) and their colleagues from the HEGRA collaboration have discovered a new, unidentified, very high energy gamma-ray source in our Galaxy. This source was detected via ground-based observations of the Imaging Atmosphere Cherenkov Telescope System.

This system of five telescopes is designed to detect the light produced when high energy particles enter the Earth’s atmosphere. The discovery of this source, TeV J2032+4130, is of particular interest because there are only a few very high energy sources in our Galaxy; most of them lie outside our Galaxy.

Additionally, this source does not show any counterpart at other wavelengths, notably at X-ray wavelengths. This team was also involved in the recent discovery of a similar unidentified source, suggesting the emergence of a new class of high energy gamma-ray sources of unknown nature.

During the last ten years, several ground-based observatories dedicated to very high energy gamma-ray detection have been built. They are designed to detect the light produced when very high energy gamma rays interact with the Earth’s atmosphere. Particles that travel in the Earth’s atmosphere faster than the speed of light in air (that is a bit lower than the speed of light in vacuum) produce so-called Cherenkov radiation. Cherenkov light is made of fast and faint blue flashes. This effect is analogous to the supersonic bang that occurs when a plane travels faster than the speed of sound.

Cherenkov light is produced by very high energy particles such as cosmic rays or gamma rays that enter the Earth’s atmosphere. Specialized telescopes that detect the Cherenkov light and infer information about the incoming cosmic rays and gamma-ray photons, have been built during the past few years. Cosmic rays and gamma rays can be distinguished because, unlike gamma rays, cosmic rays reach the Earth’s atmosphere evenly from all directions.

As charged particles, cosmic rays are deflected by galactic and intergalactic magnetic fields during their travel to Earth. On the contrary, gamma rays are uncharged particles: they are not deflected by magnetic fields and follow a straight path to Earth. By checking whether a given Cherenkov flash comes from a single direction or from all directions, one can distinguish whether it is produced by cosmic rays or by gamma rays. Additionally, as gamma rays are not deflected, they point directly to their source, which may thus be identified.

About ten years ago, the High Energy Gamma-Ray Astronomy (HEGRA) collaboration, made up of German, Spanish and Armenian teams, built the stereoscopic Imaging Atmosphere Cherenkov Telescope System, dedicated to the detection of high energy gamma rays by the intermediary of the Cherenkov effect. Now dimantled, this system was made up of five identical telescopes and was designed to detect gamma ray events rather than cosmic rays events. It was the first time that such a system was built to observe gamma ray events using stereoscopic techniques: the five telescopes view the same events from slightly different angles. This technique yields an improved reconstruction of the initial gamma-ray particle entering the atmosphere. The system was able to identify the direction of the incoming gamma ray with a precision better than 0.1°.

Using the HEGRA Imaging Atmosphere Cherenkov Telescope System, F. Aharonian (Heidelberg, Germany) and the HEGRA collaboration have now confirmed the discovery of a new high energy gamma-ray source that was made a few years ago. This source is named “TeV J2032+4130”. “TeV” refers to the energy level of the source; it is an abbreviation for teraelectronvolt. It means that the energy of the source is of the order of a teraelectronvolt, that is, a trillion (1012) electronvolts. The number “J2032+4130” refers to the position of the source in the sky. The gamma-ray photons emitted by this source are among the most energetic photons ever observed. The energy of TeV gamma-ray photons is compared to photons at other wavelengths in the chart below.

The source TeV J2032+4130 has very interesting features. It is most likely located within our own Galaxy, which is remarkable since there are only a few very high energy gamma ray sources in our Galaxy. The centre of our Galaxy is a famous gamma ray source. Another well-known source is the Crab Nebula (see right picture), the remnant of a supernova explosion. In both cases, the corresponding sources also have strong emission at X-ray wavelengths, suggesting the presence of accelerated electrons.

On the contrary, TeV 2032+4130 does not show any counterpart at other wavelengths, notably at X-ray energies. The lack (or at least the low level) of X-ray emission of TeV 2032+4130 suggests that the gamma ray emission arises from the interaction of accelerated cosmic rays with the local ambient matter.

TeV J2032+4130 is located in the Cygnus region, an extremely active star-formation region. It contains a large number of X-ray and low energy gamma-ray sources. To explain the gamma rays emitted by TeV J2032+4130, the HEGRA collaboration looked for sites in this region that could accelerate cosmic ray particles to high enough energy. Such sites could be supernova remnants, expanding clouds of gas that represent the outer layers of exploded stars named supernovae. However, no such supernova remnant has been identified yet in this region. The team believes that TeV J2032+4130 might be related to the “OB stellar association” Cygnus OB2. An OB association is a grouping of very hot and massive young stars. Such an association is named “OB” because these stars have O and B spectral types. Cygnus OB2 is thought to be powering the entire region via the intense stellar winds emanating from its stars.

The detection of the source TeV J2032+4130 over long observation times (about 200 hours) by HEGRA demonstrated the power of the stereoscopic technique for the ground-based detection of very high energy gamma rays. The next generation of ground-based instruments should be able to detect similar sources within only a few hours. One of these new generation instruments, the High Energy Stereoscopic System (HESS), resulting from an international collaboration and inaugurated earlier this year, recently revealed a similar unidentified TeV source. This second discovery suggests that a new class of high energy gamma-ray sources of unknown nature might emerge as technology improves.

Jennifer Martin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>