Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space scientist proposes new model for Jupiter’s core

14.12.2004


The planet Jupiter may have a core of tar, according to new reasearch from WUSTL.


After eleven months of politics, now it’s time for some real "core values" - not those of the candidates but those of the great gas giant planet, Jupiter.

The planet Jupiter may have a core of tar, according to new reasearch from WUSTL.
Katharina Lodders, Ph.D., Washington University in St. Louis research associate professor in Earth and Planetary Sciences in Arts & Sciences, studying data from the Galileo probe of Jupiter, proposes a new mechanism by which the planet formed 4.5 billion years ago.


The widely accepted model for Jupiter’s formation assumes that its overall composition is similar to that of the Sun, with enrichments of oxygen and other elements heavier than helium. Jupiter’s core was believed to be a massive snowball that formed in the cold reaches of the outer solar nebula, the gas and dust cloud from which the solar system formed. However, the Galileo probe mass spectrometer found much less water than expected in Jupiter’s atmosphere.

Taking the mass spectrometer data and earlier Earth-based infrared spectroscopic measurements at face value, Lodders calculated that Jupiter is depleted in water and thus in oxygen. The Jovian oxygen inventory is only about half of the oxygen elemental abundance in the Sun. On the other hand, the Galileo probe mass spectrometer data show that Jupiter’s carbon inventory is about 1.7 times larger than that in the Sun. Based on these data, Lodders argues that Jupiter’s core was mainly tar instead of ice.

Snow line yields to tar line

Lodders’ theoretical model assumes an outer solar system warmer than previously thought. Her theory replaces what astronomers call the "snow line," the point in the solar nebula where water ice condenses, with the new "tar line," the point where asphalt or tar-like material formed, pushing the snow line farther out in the solar nebula.

Picture a snowy street in winter and a fresh layer of tar on part of that street.

"Snow will evaporate with warmer temperatures but the tar will stay" said Lodders. "Also consider the fact that organics make a kind of sticky goo, which is good for gathering rocks and building the core. Imagine an ice cube and sticking bits of rock to it, then think of maple syrup. What’s going to have better sticking properties?"

Jupiter’s core formed rapidly relative to the rate at which gas was lost from the solar nebula. Once its core reached about 10 Earth masses, gravitational attraction captured the surrounding nebular gas and built up the gas giant planet we observe today. The core question, if you will, is: If there was a lot of water ice that helped to built the Jovian core, where is the water now?

"My thinking is to look at the (Galileo) data, accept them and come up with a new theory, a new model instead of fitting the observations to the older model," said Lodders. "It’s always bad, though, if you reject a model and don’t come up with a better one. "

Portrait of a dry planet

The observations indicate that water is depleted on Jupiter. "If there never was much water ice you never expect to observe much water in the atmosphere now," said Lodders. "However, you need to build a large proto-core fast, because otherwise you don’t have enough mass there to accrete gas and to make a gas giant planet."

But Jupiter is enriched in carbon, and Lodders notes that there is much evidence for carbon being locked up in organic material on outer solar system planets, comets, and meteorites, and the interstellar medium from which our solar system originated.

Lodders proposes that the Jovian core is originally tar and rock, steadily growing to the point where it accretes gas from the solar nebula, primarily hydrogen and helium. Energy from the accretion heats up Jupiter, reacting the tar and making methane, the third most abundant gas observed in the planet’s atmosphere after hydrogen and helium.

"Up to fifty percent of the carbon in the interstellar medium may be in organic solids," she pointed out. "Organic solids are abundant out there and Jupiter is enriched in carbon, so it makes sense to assume that organic solids - instead of water ice - provided the glue to rapidly build the proto Jovian core."

Lodders described her new model at the annual meeting of the Division of Planetary Sciences of the American Astronomical Society in Louisville, Kentucky, from Nov. 8-12, 2004, and in the Aug. 10, 2004 issue of the Astrophysical Journal.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>