Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selective coatings create biological sensors from carbon nanotubes

13.12.2004


Protein-encapsulated single-walled carbon nanotubes that alter their fluorescence in the presence of specific biomolecules could generate many new types of implantable biological sensors, say researchers from the University of Illinois at Urbana-Champaign who developed the encapsulation technique.



In a paper accepted for publication in the journal Nature Materials, and posted on its Web site, the researchers showed the viability of their technique by creating a near-infrared nanoscale sensor that detects glucose. The sensor could be inserted into tissue, excited with a laser pointer, and provide real-time, continuous monitoring of blood glucose level.

"Carbon nanotubes naturally fluoresce in the near-infrared region of the spectrum where human tissue and biological fluids are particularly transparent," said Michael Strano, a professor of chemical and biomolecular engineering at Illinois. "We have developed molecular sheaths around the nanotube that respond to a particular chemical and modulate the nanotube’s optical properties."


To make their biological sensors, Strano, postdoctoral research associate Seunghyun Baik, and graduate students Paul Barone and Daniel Heller begin by assembling a monolayer of the enzyme glucose oxidase on the surface of nanotubes suspended in water. The enzyme not only prevents the nanotubes from sticking together into useless clumps, it also acts as a selective site where glucose will bind and generate hydrogen peroxide.

Next, the researchers functionalize the surface with ferricyanide, an ion that is sensitive to hydrogen peroxide. The ion attaches to the surface through the porous monolayer. When present, hydrogen peroxide will form a complex with the ion, which changes the electron density of the nanotube and consequently its optical properties.

"When glucose encounters the enzyme, hydrogen peroxide is produced, which quickly reacts with the ferricyanide to modulate the electronic structure and optical characteristics of the nanotube," Strano said. "The more glucose that is present, the brighter the nanotube will fluoresce."

To prove the practicality of their technique, Strano’s team loaded some of the sensors into a porous capillary that confined the nanotubes but allowed glucose to enter. When inserted into human tissue, the fluorescent emission of the sensor corresponded to the local glucose concentration.

"The advantage of the near-infrared signaling to and from such a capillary device is its potential for implantation into thick tissue or whole blood media, where the signal may penetrate up to several centimeters," Strano said. "And, because nanotubes won’t degrade like organic molecules that fluoresce, these nanoparticle optical sensors would be suitable for long-term monitoring applications."

One important aspect of the new surface chemistry, Strano said, is that no bonds are broken on the nanotube. "This allows us to shuttle electrons in and out without damaging the nanotube itself."

Another important aspect is that the technique can be extended to many other chemical systems. "We’ve shown that it is possible to tailor the surface to make it selective to a particular analyte," Strano said. "There are whole classes of analytes that can be detected in this manner."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>