Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selective coatings create biological sensors from carbon nanotubes

13.12.2004


Protein-encapsulated single-walled carbon nanotubes that alter their fluorescence in the presence of specific biomolecules could generate many new types of implantable biological sensors, say researchers from the University of Illinois at Urbana-Champaign who developed the encapsulation technique.



In a paper accepted for publication in the journal Nature Materials, and posted on its Web site, the researchers showed the viability of their technique by creating a near-infrared nanoscale sensor that detects glucose. The sensor could be inserted into tissue, excited with a laser pointer, and provide real-time, continuous monitoring of blood glucose level.

"Carbon nanotubes naturally fluoresce in the near-infrared region of the spectrum where human tissue and biological fluids are particularly transparent," said Michael Strano, a professor of chemical and biomolecular engineering at Illinois. "We have developed molecular sheaths around the nanotube that respond to a particular chemical and modulate the nanotube’s optical properties."


To make their biological sensors, Strano, postdoctoral research associate Seunghyun Baik, and graduate students Paul Barone and Daniel Heller begin by assembling a monolayer of the enzyme glucose oxidase on the surface of nanotubes suspended in water. The enzyme not only prevents the nanotubes from sticking together into useless clumps, it also acts as a selective site where glucose will bind and generate hydrogen peroxide.

Next, the researchers functionalize the surface with ferricyanide, an ion that is sensitive to hydrogen peroxide. The ion attaches to the surface through the porous monolayer. When present, hydrogen peroxide will form a complex with the ion, which changes the electron density of the nanotube and consequently its optical properties.

"When glucose encounters the enzyme, hydrogen peroxide is produced, which quickly reacts with the ferricyanide to modulate the electronic structure and optical characteristics of the nanotube," Strano said. "The more glucose that is present, the brighter the nanotube will fluoresce."

To prove the practicality of their technique, Strano’s team loaded some of the sensors into a porous capillary that confined the nanotubes but allowed glucose to enter. When inserted into human tissue, the fluorescent emission of the sensor corresponded to the local glucose concentration.

"The advantage of the near-infrared signaling to and from such a capillary device is its potential for implantation into thick tissue or whole blood media, where the signal may penetrate up to several centimeters," Strano said. "And, because nanotubes won’t degrade like organic molecules that fluoresce, these nanoparticle optical sensors would be suitable for long-term monitoring applications."

One important aspect of the new surface chemistry, Strano said, is that no bonds are broken on the nanotube. "This allows us to shuttle electrons in and out without damaging the nanotube itself."

Another important aspect is that the technique can be extended to many other chemical systems. "We’ve shown that it is possible to tailor the surface to make it selective to a particular analyte," Strano said. "There are whole classes of analytes that can be detected in this manner."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>