Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bosons crystallize in 2-D traps


Theoretical simulations of six harmonically trapped bosons. See footnote for details on each graph.

Researchers at the Georgia Institute of Technology have unveiled a fundamental change in the properties of matter. The theoretical finding, that bosons placed in two-dimensional harmonic traps will crystallize when the strength of their repulsive interactions is increased, appears in the December 3 issue of the journal Physical Review Letters (volume 93, article 230405, 2004).

One of two categories of elementary particles, bosons typically form cloudy aggregates called Bose-Einstein condensates when cooled to temperatures near absolute zero. In the condensate, the particles may be pictured as sitting on top of one another, occupying the same space. But that’s only when their interactions are relatively weak, said Uzi Landman, director of the Center for Computational Materials Science, Regents’ professor and Callaway chair of physics at Georgia Tech.

"When the repulsive interaction between the bosons is increased, they separate and instead of forming a condensate they crystallize, acting more like their counterpart fermions. Experimentally, such behavior was shown this year to happen in one-dimension, now we predicted theoretically that it will happen in two-dimensions. Furthermore, through a straightforward extension of our method one could easily extend it to three-dimensions,” he said.

In quantum physics, all elementary particles such as quarks, electrons and gluons are classified as either fermions or bosons, depending on their spin. The spin of bosons takes integer values and fermions have half-integer values of their spin. Electrons and quarks –two examples of fermions – are the basic building blocks of matter, while bosons such as photons and gluons govern the fundamental forces of nature such as electromagnetism.

In 1960 it was theoretically predicted by Marvin Girardeau, now at the University of Arizona, that in one-dimensional space, bosons would act more like fermions and form a lattice if their repulsion became sufficiently strong. It took more than 40 years for experimental physicists to test the theory, but recently two different groups of scientists published articles in Science and Nature verifying the theory, using experiments carried out on trapped bosons.

Now, Landman, his colleague Constantine Yannouleas, and graduate student Igor Romanovsky, discovered, through theoretical modeling involving computer-based simulations of up to seven bosons in a harmonic two-dimensional trap, that instead of clumping together to form Bose-Einstein condensates, the bosons localize in space forming polygonal crystals. For example, six bosons crystallize into a two-dimensional pentagon-shaped crystal with one boson in the center. “The forces between the bosons are repulsive,” said Landman. “The trap is the only thing holding them together. As soon as you release the trap, the crystal goes away.”

Landman and Yannouleas do not think that it will take another 40 years for experimental physicists to test the theoretical prediction. “Now that people know how to make Bose-Einstein condensates, use traps, and vary the strength of the interactions, testing could be done faster,” Landman explained.

As for potential applications of this research, Landman notes that “the main merit of this research is in increasing our fundamental understanding of nature and of the processes underlying physical behavior under certain extreme conditions”. “Nevertheless,” he adds, “out of such basic scientific contributions other things may develop, for example in the area of quantum computing – you just have to wait and see.”

In the 1920s Indian physicist Satyendra Nath Bose and Albert Einstein predicted that atoms cooled to temperatures close to absolute zero would collapse to their lowest quantum state, forming a state of matter that became known as the Bose-Einstein condensate. It wasn’t until 1995 that physicists in Boulder, Colorado, and at MIT were successful in creating the condensate. And in 2001, Eric Cornell, Wolfgang Ketterle and Carl Wieman were awarded the Nobel Prize in Physics for this achievement.

Graph Captions

Theoretical simulations of six harmonically trapped bosons.

(a) The density of a Bose-Einstein condensate formed for weak repulsive interactions.

(b) The density distribution of the symmetry-broken crystalline solution that is predicted to form for stronger repulsive interactions.

(c) Density distribution of the symmetry-restored state, showing overall circular symmetry.

(d) Conditional probability map, with the reference point located on one of crystalline sites (marked by a black dot), illustrating a predicted pentagonal lattice with one boson at the center. Distances are in units of L0 which is determined by the characteristic harmonic frequency of the trap, and the effective mass of the bosons.

David Terraso | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>