Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extrasolar Planet News: Superplanet Or Brown Dwarf?

30.11.2004


New observations of an oddball planetary system 150 light-years from Earth may force astronomers to rethink the textbook definition of a planet and the accepted idea about how such a body forms. The observations suggest that either some planets are superheavy or that planets can form from disks of gas and dust that encircle not just a single star but two starlike objects.



Two years ago, when astronomers at the Geneva Observatory in Sauverny, Switzerland, reported their findings on the sunlike star HD 202206, nothing seemed out of the ordinary. The team announced that a body at least 17.4 times as heavy as Jupiter orbits the star. The unseen body resides at an average distance from the star of 0.82 times the Earth-sun distance.

The same team, led by Alexandre Correia of the University of Aveiro in Portugal, has now found evidence for a second unseen body orbiting HD 202206. This object is at least 2.4 times as heavy as Jupiter and resides at an average distance from the star of 2.55 times the Earth-sun distance, the researchers report (http://xxx.lanl.gov/abs/ astro-ph/0411512).


According to International Astronomical Union standards, the heavier body is a failed star known as a brown dwarf. By the union’s definition, brown dwarfs range from 13 to about 75 times the mass of Jupiter. That’s heavy enough to burn deuterium at their cores but too light to burn any other nuclear fuel, as bona fide stars do.

In contrast, the lighter object would be classified as a planet, as long as it weighs less than the 13-Jupiter-mass cutoff, as the scientists strongly suspect. In that case, it would have formed from gas and dust coalescing within a disk of material that surrounded the star in its youth. This would make it the first planet known to orbit a pair of objects— goes around the star five times, the outer body goes around exactly once. This particular synchrony has never before been observed in a planetary system. Synchrony keeps objects in an especially powerful gravitational embrace.

Synchrony can’t happen by chance, Correia says. The team suggests that the two bodies are birds of a feather, born in the same way and at the same time.

In that case, the heavier object orbiting HD 202206 wouldn’t be a brown dwarf after all, but the heaviest planet known. If so, the disk from which the two planets arose would have to have been two to four times as heavy as expected, Correia told Science News.

Moreover, if the heavier body is a superplanet, “we have to rethink our definition of what is a brown dwarf and what is a planet,” says Correia. Some objects massive enough to burn deuterium may be brown dwarfs, while others may be planets, he notes. “Somewhat odd systems like this . . . challenge our overall thinking about the formation of giant planets and brown dwarfs,” says Alan P. Boss of the Carnegie Institution of Washington (D.C.).

It’s possible that the heavier object is a brown dwarf but that theorists haven’t yet been clever enough to figure out why it’s in sync with the outer planet, cautions Adam S. Burrows of the University of Arizona in Tucson.

Published in the Nov. 27 issue of Science News, a weekly news magazine.

| newswise
Further information:
http://www.sciencenews.org

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>