Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Listen, two black holes are clashing!’

26.11.2004


MiniGRAIL: first spherical gravitational wave antenna in the world

Since last week, Professor Giorgio Frossati of Leiden University’s Institute of Physics can ‘listen’ to gravitational waves. That is, if such a wave happens to come along. Gravitational waves originate from violent clashes between black holes in the universe and from instabilities in neutron stars.

MiniGRAIL is the name of the first spherical gravitational wave antenna in the world. The ball was made at the Leiden Institute of Physics (LION) of Leiden University. It is the product of years of close cooperation between Frossati’s research group and the technicians of the fine-mechanic and electronic workshop in the Institute. “A result to be proud of”, says Professor Peter Kes, LION’s scientific director.



The MiniGRAIL detector is made of copper with a pinch of aluminium (6%), has a diameter of 65 cm and weighs 1150 kilos. If a gravitational wave passes by the antenna, it will transmit a very small part of its energy to the ball. Gravity waves with a frequency of circa 3000 hertz will make the ball vibrate in all kinds of different ways.

Yet, these vibrations are very small, a billionth of a billionth part of a centimetre (10 -20 m), which makes them very difficult to measure. MiniGRAIL will have to attain a sensitivity good enough to detect these ultra-small vibrations. Astronomers predict that at the frequency and amplitude of such ultra-small vibrations various sources of gravitational waves can be measured, like clashes of black holes and instabilities in neutron stars.

In order to preclude false vibrations as much as possible, MiniGrail is built on vibration-free poles, and the ball is cooled down to ultra-low temperatures. At this moment the ball is 4 Kelvin, which is -269 degrees Celsius. This is as cold as it can get in the coldest corners of the universe. In a number of weeks the ball’s temperature will be decreased even more, to reach record depth, and then the scientific race will break loose: who in the world will be the first to measure gravitational waves?

The race will be between American teams, an Italian team and Frossati’s own team. Still, cooperation will be more important than competition. “You can never be sure you have measured a gravitational wave until you have compared notes with the other teams. Only if all of us, simultaneously, have a hit will we know that it was indeed a gravitational wave.”

Eppo Bruins | alfa
Further information:
http://www.nieuws.leidenuniv.nl/index.php3?m=&c=373
http://www.leidenuniv.nl

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>