Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Listen, two black holes are clashing!’

26.11.2004


MiniGRAIL: first spherical gravitational wave antenna in the world

Since last week, Professor Giorgio Frossati of Leiden University’s Institute of Physics can ‘listen’ to gravitational waves. That is, if such a wave happens to come along. Gravitational waves originate from violent clashes between black holes in the universe and from instabilities in neutron stars.

MiniGRAIL is the name of the first spherical gravitational wave antenna in the world. The ball was made at the Leiden Institute of Physics (LION) of Leiden University. It is the product of years of close cooperation between Frossati’s research group and the technicians of the fine-mechanic and electronic workshop in the Institute. “A result to be proud of”, says Professor Peter Kes, LION’s scientific director.



The MiniGRAIL detector is made of copper with a pinch of aluminium (6%), has a diameter of 65 cm and weighs 1150 kilos. If a gravitational wave passes by the antenna, it will transmit a very small part of its energy to the ball. Gravity waves with a frequency of circa 3000 hertz will make the ball vibrate in all kinds of different ways.

Yet, these vibrations are very small, a billionth of a billionth part of a centimetre (10 -20 m), which makes them very difficult to measure. MiniGRAIL will have to attain a sensitivity good enough to detect these ultra-small vibrations. Astronomers predict that at the frequency and amplitude of such ultra-small vibrations various sources of gravitational waves can be measured, like clashes of black holes and instabilities in neutron stars.

In order to preclude false vibrations as much as possible, MiniGrail is built on vibration-free poles, and the ball is cooled down to ultra-low temperatures. At this moment the ball is 4 Kelvin, which is -269 degrees Celsius. This is as cold as it can get in the coldest corners of the universe. In a number of weeks the ball’s temperature will be decreased even more, to reach record depth, and then the scientific race will break loose: who in the world will be the first to measure gravitational waves?

The race will be between American teams, an Italian team and Frossati’s own team. Still, cooperation will be more important than competition. “You can never be sure you have measured a gravitational wave until you have compared notes with the other teams. Only if all of us, simultaneously, have a hit will we know that it was indeed a gravitational wave.”

Eppo Bruins | alfa
Further information:
http://www.nieuws.leidenuniv.nl/index.php3?m=&c=373
http://www.leidenuniv.nl

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>