Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danish Researchers Break the Limits of the Internet

26.11.2004


A team of Danish physicists has taken a crucial step towards an Internet that is faster and more secure than what we know today. The researchers from the Niels Bohr Institute at the University of Copenhagen have created an atomic memory that, in time, will be able to break the limits for Internet communication. The team’s breakthrough was published in the prominent journal, Nature, on 25 November 2004.



From Internet to Quantum Internet

The Internet is getting faster and faster – something which we all take for granted. However, communication on the Internet takes place via tiny pulses of light that are constantly becoming weaker as the network handles the increasing flow of information. Soon, we will reach the limit for how weak the pulses can be and still be able to function as information carriers. When that happens, we will have reached the limit for the Internet as we know it today.


But this is not a limit that can stop these Danish physicists. A new type of Internet, a so-called Quantum Internet, where information is encoded in quantum properties of tiny pulses, opens up completely new possibilities. In order for the new network to function in practice, it is first necessary to create new ways to detect and store light information in atoms, a so-called quantum memory. And that is exactly what the researchers have created.

Groundbreaking quantum mechanics

In addition to opening the door to new types of communication, the researcher’s achievement resonates in basic research circles. For atomic memory is a huge leap forward for that type of researcher, especially in the area that deals with phenomena at the atomic level, so-called quantum information.

Behind this quantum-mechanic breakthrough is Eugene Polzik, professor, Brian Julsgaard, assistant research professor, and Jacob Sherson, PhD student. The three physicists achieved the groundbreaking results at the Danish National Research Foundation Center for Quantum Optics at the Niels Bohr Institute. The work has been carried out in cooperation with researchers from the Czeck Republic and Germany as well.

Prof. Eugene Polzik | alfa
Further information:
http://www.nbi.ku.dk/
http://www.nature.com/
http://www.ku.dk

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>