Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danish Researchers Break the Limits of the Internet

26.11.2004


A team of Danish physicists has taken a crucial step towards an Internet that is faster and more secure than what we know today. The researchers from the Niels Bohr Institute at the University of Copenhagen have created an atomic memory that, in time, will be able to break the limits for Internet communication. The team’s breakthrough was published in the prominent journal, Nature, on 25 November 2004.



From Internet to Quantum Internet

The Internet is getting faster and faster – something which we all take for granted. However, communication on the Internet takes place via tiny pulses of light that are constantly becoming weaker as the network handles the increasing flow of information. Soon, we will reach the limit for how weak the pulses can be and still be able to function as information carriers. When that happens, we will have reached the limit for the Internet as we know it today.


But this is not a limit that can stop these Danish physicists. A new type of Internet, a so-called Quantum Internet, where information is encoded in quantum properties of tiny pulses, opens up completely new possibilities. In order for the new network to function in practice, it is first necessary to create new ways to detect and store light information in atoms, a so-called quantum memory. And that is exactly what the researchers have created.

Groundbreaking quantum mechanics

In addition to opening the door to new types of communication, the researcher’s achievement resonates in basic research circles. For atomic memory is a huge leap forward for that type of researcher, especially in the area that deals with phenomena at the atomic level, so-called quantum information.

Behind this quantum-mechanic breakthrough is Eugene Polzik, professor, Brian Julsgaard, assistant research professor, and Jacob Sherson, PhD student. The three physicists achieved the groundbreaking results at the Danish National Research Foundation Center for Quantum Optics at the Niels Bohr Institute. The work has been carried out in cooperation with researchers from the Czeck Republic and Germany as well.

Prof. Eugene Polzik | alfa
Further information:
http://www.nbi.ku.dk/
http://www.nature.com/
http://www.ku.dk

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>