Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danish Researchers Break the Limits of the Internet

26.11.2004


A team of Danish physicists has taken a crucial step towards an Internet that is faster and more secure than what we know today. The researchers from the Niels Bohr Institute at the University of Copenhagen have created an atomic memory that, in time, will be able to break the limits for Internet communication. The team’s breakthrough was published in the prominent journal, Nature, on 25 November 2004.



From Internet to Quantum Internet

The Internet is getting faster and faster – something which we all take for granted. However, communication on the Internet takes place via tiny pulses of light that are constantly becoming weaker as the network handles the increasing flow of information. Soon, we will reach the limit for how weak the pulses can be and still be able to function as information carriers. When that happens, we will have reached the limit for the Internet as we know it today.


But this is not a limit that can stop these Danish physicists. A new type of Internet, a so-called Quantum Internet, where information is encoded in quantum properties of tiny pulses, opens up completely new possibilities. In order for the new network to function in practice, it is first necessary to create new ways to detect and store light information in atoms, a so-called quantum memory. And that is exactly what the researchers have created.

Groundbreaking quantum mechanics

In addition to opening the door to new types of communication, the researcher’s achievement resonates in basic research circles. For atomic memory is a huge leap forward for that type of researcher, especially in the area that deals with phenomena at the atomic level, so-called quantum information.

Behind this quantum-mechanic breakthrough is Eugene Polzik, professor, Brian Julsgaard, assistant research professor, and Jacob Sherson, PhD student. The three physicists achieved the groundbreaking results at the Danish National Research Foundation Center for Quantum Optics at the Niels Bohr Institute. The work has been carried out in cooperation with researchers from the Czeck Republic and Germany as well.

Prof. Eugene Polzik | alfa
Further information:
http://www.nbi.ku.dk/
http://www.nature.com/
http://www.ku.dk

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>