Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics Prof Develops System to Monitor Cement Curing

23.11.2004


An Elizabethtown College professor has developed an embedded sensor that functions in cement much like a thermometer in the Thanksgiving turkey.



“The thermometer indicates if the turkey is done by measuring its internal temperature,” said Nathaniel Hager III, an adjunct faculty member in Elizabethtown’s physics and engineering department. “The embedded sensor does the same thing in concrete by monitoring how quickly water involved in the curing process is chemically combining with portland cement.”

Hager’s research, conducted with business partner and chemist Roman C. Domszy, involves embedding a disposable sensor in a concrete structure when the cement is poured. “A fast electrical pulse is bounced off the sensor, producing a reflected pulse that contains molecular signals due to unreacted water and water combining with portland cement,” Hager said. “Tracking these two signals along with cure time provides a better understanding of the cure process and identifies irregularities that lead to improper cure. Essentially, we’re looking for the signals that correspond with cement strength. If we don’t get them, we have to trust the signals to tell us that something is wrong.”


There are a number of applications in the construction industry for the system, which Hager and Domszy refer to as Time-Domain-Reflectometry (TDR) Concrete Cure Monitoring. The system could be used by companies that make cement and cement additives to determine how to optimize the curing process. It could also be used in the field to help test structures – “to see if cement is fully hard” -- or on multilevel structures, to determine when to pour the second layer. And it could help identify residual moisture in cement floors before surface coatings, like epoxy, are installed, minimizing moisture damage and reducing wait times. “When the thermometer indicates that the turkey is getting done too quickly or too slowly, you take corrective action like turning the oven temperature up or back,” Hager said. “This monitoring system allows those in construction to do the same thing with concrete.”

An article on Hager and Domszy’s research, which was funded in part by National Science Foundation’s Small Business Innovation Research (SBIR) program, appeared in a recent issue of the Journal of Applied Physics. A patent for their concrete cure monitoring system should be issued in a few months.

At Elizabethtown College -- central Pennsylvania’s premier small, comprehensive college -- 1800 men and women enjoy personal attention, breadth of curriculum, experiential learning and a commitment to serving others. Elizabethtown has been ranked for 11 consecutive years by U.S. News and World Report as one of the top comprehensive colleges in the North.

| newswise
Further information:
http://www.etown.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>