Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics Prof Develops System to Monitor Cement Curing

23.11.2004


An Elizabethtown College professor has developed an embedded sensor that functions in cement much like a thermometer in the Thanksgiving turkey.



“The thermometer indicates if the turkey is done by measuring its internal temperature,” said Nathaniel Hager III, an adjunct faculty member in Elizabethtown’s physics and engineering department. “The embedded sensor does the same thing in concrete by monitoring how quickly water involved in the curing process is chemically combining with portland cement.”

Hager’s research, conducted with business partner and chemist Roman C. Domszy, involves embedding a disposable sensor in a concrete structure when the cement is poured. “A fast electrical pulse is bounced off the sensor, producing a reflected pulse that contains molecular signals due to unreacted water and water combining with portland cement,” Hager said. “Tracking these two signals along with cure time provides a better understanding of the cure process and identifies irregularities that lead to improper cure. Essentially, we’re looking for the signals that correspond with cement strength. If we don’t get them, we have to trust the signals to tell us that something is wrong.”


There are a number of applications in the construction industry for the system, which Hager and Domszy refer to as Time-Domain-Reflectometry (TDR) Concrete Cure Monitoring. The system could be used by companies that make cement and cement additives to determine how to optimize the curing process. It could also be used in the field to help test structures – “to see if cement is fully hard” -- or on multilevel structures, to determine when to pour the second layer. And it could help identify residual moisture in cement floors before surface coatings, like epoxy, are installed, minimizing moisture damage and reducing wait times. “When the thermometer indicates that the turkey is getting done too quickly or too slowly, you take corrective action like turning the oven temperature up or back,” Hager said. “This monitoring system allows those in construction to do the same thing with concrete.”

An article on Hager and Domszy’s research, which was funded in part by National Science Foundation’s Small Business Innovation Research (SBIR) program, appeared in a recent issue of the Journal of Applied Physics. A patent for their concrete cure monitoring system should be issued in a few months.

At Elizabethtown College -- central Pennsylvania’s premier small, comprehensive college -- 1800 men and women enjoy personal attention, breadth of curriculum, experiential learning and a commitment to serving others. Elizabethtown has been ranked for 11 consecutive years by U.S. News and World Report as one of the top comprehensive colleges in the North.

| newswise
Further information:
http://www.etown.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>