Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unusual material that contracts when heated is giving up its secrets to physicists


Most solids expand when heated, a familiar phenomenon with many practical implications. Among the rare exceptions to this rule, the compound zirconium tungstate stands out by virtue of the enormous temperature range over which it exhibits so-called "negative thermal expansion," contracting as it heats up and expanding as it cools, and because it does so uniformly in all directions.

While engineers are already pursuing practical applications in areas ranging from electronics to dentistry, physicists have had a hard time explaining exactly what causes zirconium tungstate to behave in such a bizarre manner. Now, a team of researchers at the University of California, Santa Cruz, and other institutions has reported new insights into the atomic interactions underlying this phenomenon. A paper describing their findings will be posted online on November 22 and will appear in the December 26 issue of the journal Physical Review Letters. "We have shown that a combination of geometrical frustration and unusual atomic motions are likely to be important to the negative thermal expansion in zirconium tungstate," said Zack Schlesinger, a professor of physics at UCSC.

Geometrical frustration sounds like something a high-school math student might feel, but is actually a rich area of research in physics and material science. In simple terms, geometrical frustration is like trying to tile a floor with pentagons--the shapes just won’t fit together. In the case of zirconium tungstate, geometrical frustration comes into play during certain temperature-related vibrations of the compound’s crystal lattice structure, the configuration of atomic bonds that holds the atoms together in a crystal.

The normal thermal expansion of solids results from changes in the atomic motions that make up these lattice vibrations. As heating adds more kinetic energy to the system, the lattice structure expands (in most solids) to accommodate the increasingly energetic atomic motions.

To study the atomic motions involved in lattice vibrations, physicists separate the vibrations into discrete "modes" or types of vibrations. In their investigation of zirconium tungstate, Schlesinger and his collaborators found evidence for a rotational ("twisting") mode that, due to geometrical frustration, occurs together with a translational ("back-and-forth") mode. This mixing of rotational and translational motion has the effect of pulling the overall structure together as heating puts more energy into the vibrations.

In other materials that show negative thermal expansion, the vibrational modes that pull the solid together create instabilities that eventually lead to rearrangements in the atomic structure. As a result, the negative thermal expansion only occurs over a narrow temperature range. In zirconium tungstate, however, geometrical frustration appears to block any such instability.

At least, that is the researchers’ current thinking, Schlesinger said. "To understand a complex system like this is not trivial. You have to break it down into all the different components of the atomic motions, and our work is making progress in that direction," he said. "It involves both mathematical analysis and experimental measurements, and ultimately you need to be able to visualize it."

The experiments themselves are relatively simple, he said. They involve shining infrared light on a sample of zirconium tungstate and measuring the reflectivity, which can be transformed mathematically into optical conductivity. These measurements reveal the frequencies of light that are absorbed by coupling with the lattice vibrations, and the researchers studied how these measurements changed with temperature.

Schlesinger said he initially gave the project to an undergraduate working in his lab, Chandra Turpen. When she began finding anomalous results, graduate student Jason Hancock used mathematical modeling to help figure out what the results meant. "It started out as a senior thesis project that just became a lot more interesting as we went along," Schlesinger said. In addition to Schlesinger, Turpen, and Hancock, who is the first author of the paper, the other coauthors are Glen Kowach of the City College of New York and Arthur Ramirez of Bell Laboratories, Lucent Technologies, in New Jersey.

Schlesinger said the findings are interesting with respect to both pure physics and practical applications. On the pure physics side, they seem to provide a new and unusual example of geometrical frustration, which is most often studied in the realm of magnetism and disordered systems such as spin glasses. "This material is not disordered--it is a perfect stoichiometric crystal--so we are seeing geometrical frustration manifested in a whole new system," Schlesinger said.

On the practical side, thermal expansion is a big problem in many different areas. In dentistry, most cracked fillings are the result of uneven expansion and contraction--the so-called "tea-to-ice-cream problem." And engineers working on everything from electronics to high-performance engines must cope with the effects of thermal expansion. A material that did not expand or contract with changing temperatures would have broad applications. "If you could create the right mix of materials to neutralize thermal expansion, that would be quite a significant technological advance," Schlesinger said.

Tim Stephens | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>